Skip to main content

Advertisement

Log in

Co-delivery of GOLPH3 siRNA and gefitinib by cationic lipid-PLGA nanoparticles improves EGFR-targeted therapy for glioma

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

A Correction to this article was published on 03 January 2020

This article has been updated

Abstract

Glioblastoma is one of the most aggressive types of brain tumor. Epidermal growth factor receptors (EGFRs) are overexpressed in glioma, and EGFR amplifications and mutations lead to rapid proliferation and invasion. EGFR-targeted therapy might be an effective treatment for glioma. Gefitinib (Ge) is an EGFR tyrosine kinase inhibitor (TKI), and Golgi phosphoprotein 3 (GOLPH3) expression is associated with worse glioma prognosis. Downregulation of GOLPH3 could promote EGFR degradation. Here, an angiopep-2 (A2)-modified cationic lipid-poly (lactic-co-glycolic acid) (PLGA) nanoparticle (A2-N) was developed that can release Ge and GOLPH3 siRNA (siGOLPH3) upon entering glioma cells and therefore acts as a combinatorial anti-tumor therapy. The in vitro and in vivo studies proved that A2-N/Ge/siGOLPH3 successfully crossed the blood-brain barrier (BBB) and targeted glioma. Released siGOLPH3 effectively silenced GOLPH3 mRNA expression and further promoted EGFR and p-EGFR degradation. Released Ge also markedly inhibited EGFR signaling. This combined EGFR-targeted action achieved remarkable anti-glioma effects and could be a safe and effective treatment for glioma.

Key messages

  • Angiopep-2-modified cationic lipid polymer can penetrate the BBB.

  • Gefitinib can inhibit EGFR signaling and block the autophosphorylation of critical tyrosine residues on EGFR.

  • GOLPH3 siRNA can be transfected into glioma and downregulate GLOPH3 expression.

  • A2-N/Ge/siGOLPH3 can inhibit glioma growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 03 January 2020

    The correct affiliation no 2 is presented in this paper.

Abbreviations

A2:

angiopep2

ATP:

adenosine triphosphate

BBB:

blood-brain barrier

CLs:

cationic liposomes

CLSM:

confocal laser scan microscopy

DAPI:

4′, 6-diamidino-2-phenylindole dihydrochloride

DMSO:

dimethyl sulfoxide

DMEM:

Dulbecco’s Modified Eagle’s Medium

DOTAP:

1, 2-Dioleoyl-3-trimethylammonium-propane

DSPE-PEG-MAL:

2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethyleneglycol)]

EB:

Ethidium Bromide

EdU:

5-Ethynyl-2'-deoxyuridine

EGFR:

epidermal growth factor receptor

EGFRvIII:

epidermal growth factor receptor variant typeIII

EPR:

enhanced permeability and retention

FBS:

fetal bovine serum

GBM:

glioblastoma multiforme

Ge:

gefitinib

GOLPH3:

golgi phosphoprotein 3

H&E:

hematoxylin-eosin

i.v.:

intravenous injection

MAbs:

monoclonal antibodies

LRP-1:

low-density lipoprotein receptor-related protein-1

N:

nanoparticle

NCsiRNA:

nonsense siRNA

n.s.:

nonesense

OD:

optical density

PBS:

phosphate buffer saline

PLGA:

poly (D, L-lactic-co-glycolic acid)

qRT-PCR:

quantitative real-time polymerase chain reaction

RMT:

receptor mediated transcytosis

RNAi:

RNA interference

siGOLPH3:

GOLPH3 siRNA

siRNA:

small interfering RNA

TCGA:

The Cancer Genome Atlas

TEM:

transmission electron microscopy

TKIs:

tyrosine kinase inhibitors

WB:

western blot

Wls:

wntless

References

  1. Laug D, Glasgow SM, Deneen B (2018) A glial blueprint for gliomagenesis. Nat Rev Neurosci. 19(7):393–403

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lapointe S, Perry A, Butowski NA (2018) Primary brain tumors in adults. Lancet. 392(10145):432–446

    PubMed  Google Scholar 

  3. Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N (2018) Current Challenges and opportunities in treating glioblastoma. Pharmacological Reviews. 70(3):412–445

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakada M, Kita D, Watanabe T, Hayashi Y, Teng L, Pyko IV, Hamada J (2011) Aberrant signaling pathways in glioma. Cancers (Basel). 3(3):3242–3278

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res. 64(19):6892–6899

    CAS  PubMed  Google Scholar 

  6. Li J, Liang R, Song C, Xiang Y, Liu Y (2018) Prognostic significance of epidermal growth factor receptor expression in glioma patients. Onco Targets Ther. 11:731–742

    PubMed  PubMed Central  Google Scholar 

  7. Tripathy K, Das B, Singh AK, Misra A, Misra S, Misra SS (2017) Prognostic significance of epidermal growth factor receptor in patients of glioblastoma multiforme. J Clin Diagn Res. 11(8):EC05–EEC8

    PubMed  PubMed Central  Google Scholar 

  8. Mizoguchi M, Betensky RA, Batchelor TT, Bernay DC, Louis DN, Nutt CL (2006) Activation of STAT3, MAPK, and AKT in malignant astrocytic gliomas: correlation with EGFR status, tumor grade, and survival. J Neuropathol Exp Neurol. 65(12):1181–1188

    CAS  PubMed  Google Scholar 

  9. Mao J, Ran D, Xie C, Shen Q, Wang S, Lu W (2017) EGFR/EGFRvIII dual-targeting peptide-mediated drug delivery for enhanced glioma therapy. ACS Appl Mater Interfaces. 9(29):24462–24475

    CAS  PubMed  Google Scholar 

  10. Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol. 12(2):104–117

    CAS  PubMed  Google Scholar 

  11. Thorne AH, Zanca C, Furnari F (2016) Epidermal growth factor receptor targeting and challenges in glioblastoma. Neuro Oncol. 18(7):914–918

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rich JN, Rasheed BK, Yan H (2004) EGFR mutations and sensitivity to gefitinib. N Engl J Med. 351(12):1260–1261 author reply -1

    CAS  PubMed  Google Scholar 

  13. Sirisoma N, Pervin A, Zhang H, Jiang S, Willardsen JA, Anderson MB, Mather G, Pleiman CM, Kasibhatla S, Tseng B, Drewe J, Cai SX (2009) Discovery of N-(4-Methoxyphenyl)-N,2-dimethylquinazolin-4-amine, a potent apoptosis inducer and efficacious anticancer agent with high blood brain barrier penetration. J Med Chem. 52(8):2341–2351

    CAS  PubMed  Google Scholar 

  14. Shinde SR, Maddika S (2016) PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7. Nat Commun. 7:10689

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li MY, Lai PL, Chou YT, Chi AP, Mi YZ, Khoo KH, Chang GD, Wu CW, Meng TC, Chen GC (2015) Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation. Oncogene. 34(29):3791–3803

    CAS  PubMed  Google Scholar 

  16. Zhou XP, Xie S, Wu SS, Qi YH, Wang ZH, Zhang H, Lu D, Wang X, Dong Y, Liu G, Yang D, Shi Q, Bian W, Yu R (2017) Golgi phosphoprotein 3 promotes glioma progression via inhibiting Rab5-mediated endocytosis and degradation of epidermal growth factor receptor. Neuro-Oncology. 19(12):1628–1639

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan Z, Zhao L, Zhang Y, Li S, Pan B, Hua L, Wang Z, Ye C, Lu J, Yu R, Liu H (2018) Inhibition of glioma growth by a GOLPH3 siRNA-loaded cationic liposomes. J Neurooncol. 140(2):249–260

    CAS  PubMed  Google Scholar 

  18. Boado RJ (2007) Blood-brain barrier transport of non-viral gene and RNAi therapeutics. Pharm Res. 24(9):1772–1787

    CAS  PubMed  Google Scholar 

  19. Shah L, Yadav S, Amiji M (2013) Nanotechnology for CNS delivery of bio-therapeutic agents. Drug Deliv Transl Res. 3(4):336–351

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Baiyang L, Leran B, Zhen W, Yandong X, Baixiang D, Dandan Z, Yufu Z, Jun L, Rutong Y, Hongmei L (2017) Reduction-responsive PEtOz-SS-PCL micelle with tailored size to overcome blood-brain barrier and enhance doxorubicin antiglioma effect. Drug Deliv. 24(1):1782–1790

    CAS  PubMed  Google Scholar 

  21. Lin T, Zhao P, Jiang Y, Tang Y, Jin H, Pan Z, He H, Yang VC, Huang Y (2016) Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano. 10(11):9999–10012

    CAS  PubMed  Google Scholar 

  22. Ni D, Zhang J, Bu W, Xing H, Han F, Xiao Q, Yao Z, Chen F, He Q, Liu J, Zhang S, Fan W, Zhou L, Peng W, Shi J (2014) Dual-targeting upconversion nanoprobes across the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. ACS Nano. 8(2):1231–1242

    CAS  PubMed  Google Scholar 

  23. Liu HM, Zhang YF, Xie YD, Cai YF, Li BY, Li W et al (2017) Hypoxia-responsive ionizable liposome delivery siRNA for glioma therapy. Int J Nanomedicine. 12:1065–83.34

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu H, Li Y, Mozhi A, Zhang L, Liu Y, Xu X, Xing J, Liang X, Ma G, Yang J, Zhang X (2014) SiRNA-phospholipid conjugates for gene and drug delivery in cancer treatment. Biomaterials. 35(24):6519–6533

    CAS  PubMed  Google Scholar 

  25. Tang J, Zhou H, Hou X, Wang L, Li Y, Pang Y et al (2018) Enhanced anti-tumor efficacy of temozolomide-loaded carboxylated poly(amido-amine) combined with photothermal/photodynamic therapy for melanoma treatment. Cancer Letters. 423:16–26

    CAS  PubMed  Google Scholar 

  26. Xu R, Ji JX, Zhang X, Han MZ, Zhang C, Xu YY, Wei Y, Wang S, Huang B, Chen A, Zhang D, Zhang Q, Li W, Jiang Z, Wang J, Li X (2017) PDGFA/PDGFRα-regulated GOLM1 promotes human glioma progression through activation of AKT. Journal of Experimental & Clinical Cancer Research. 36(1):193

    Google Scholar 

  27. Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR et al (2014) The somatic genomic landscape of glioblastoma. Cell. 155(2):462–477

    Google Scholar 

  28. Inda MD, Bonavia R, Mukasa A, Narita Y, Sah DWY, Vandenberg S, Brennan C, Johns TG, Bachoo R, Hadwiger P, Tan P, Depinho RA, Cavenee W, Furnari F (2010) Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes & Development. 24(16):1731–1745

    CAS  Google Scholar 

  29. De Vries NA, Buckle T, Zhao J, Beijnen JH, Schellens JHM, van Tellingen O (2012) Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Invest New Drug. 30(2):443–449

    CAS  Google Scholar 

  30. Wen PY, Chang SM, Lamborn KR, Kuhn JG, Norden AD, Cloughesy TF et al (2014) Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas: North American Brain Tumor Consortium trial 04-02. Neuro-Oncology. 16(4):567–578

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chakravarti A, Wang M, Robins HI, Lautenschlaeger T, Curran WJ, Brachman DG et al (2013) RTOG 0211: A phase 1/2 study of radiation therapy with concurrent gefitinib for newly diagnosed glioblastoma patients. Int J Radiat Oncol. 85(5):1206–1211

    CAS  Google Scholar 

  32. Clarke JL, Molinaro AM, Phillips JJ, Butowski NA, Chang SM, Perry A, Costello JF, DeSilva A, Rabbitt JE, Prados MD (2014) A single-institution phase II trial of radiation, temozolomide, erlotinib, and bevacizumab for initial treatment of glioblastoma. Neuro-Oncology. 16(7):984–990

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Reardon DA, Nabors LB, Mason WP, Perry JR, Shapiro W, Kavan P, Mathieu D, Phuphanich S, Cseh A, Fu Y, Cong J, Wind S, Eisenstat DD, BI 1200 36 Trial Group and the Canadian Brain Tumour Consortium. Phase I/randomized phase II study of afatinib, an irreversible ErbB family blocker, with or without protracted temozolomide in adults with recurrent glioblastoma. Neuro-Oncology. 2015; 17 (3): 430- 439.

  34. Hegi ME, Diserens AC, Bady P, Kamoshima Y, Kouwenhoven MCM, Delorenzi M, Lambiv WL, Hamou MF, Matter MS, Koch A, Heppner FL, Yonekawa Y, Merlo A, Frei K, Mariani L, Hofer S (2011) Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor Gefitinib-A phase II trial. Molecular Cancer Therapeutics. 10(6):1102–1112

    CAS  PubMed  Google Scholar 

  35. Davidson BL, McCray PB (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet. 12(5):329–340

    CAS  PubMed  Google Scholar 

  36. Shi YJ, Su C, Cui WY, Li HD, Liu LW, Feng B et al (2014) Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl-beta-cyclodextrin nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. Journal of Nanobiotechnology. 12:43

    PubMed  PubMed Central  Google Scholar 

  37. Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 11(6):673–692

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang L, Hao Y, Li H, Zhao Y, Meng D, Li D et al (2015) Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles. J Drug Target. 23(9):832–846

    CAS  PubMed  Google Scholar 

  39. Kim SS, Rait A, Kim E, DeMarco J, Pirollo KF, Chang EH (2015) Encapsulation of temozolomide in a tumor-targeting nanocomplex enhances anti-cancer efficacy and reduces toxicity in a mouse model of glioblastoma. Cancer Lett. 369(1):250–258

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Cai D, Wu H, Fu Y, Cao Y, Zhang Y, Wu D, Tian Q, Yang S (2018) Functionalized Cu3BiS3 nanoparticles for dual-modal imaging and targeted photothermal/photodynamic therapy. Nanoscale. 10(9):4452–4462

    CAS  PubMed  Google Scholar 

  41. Figueiredo P, Balasubramanian V, Shahbazi MA, Correia A, Wu D, Palivan CG, Hirvonen JT, Santos HA (2016) Angiopep2-functionalized polymersomes for targeted doxorubicin delivery to glioblastoma cells. Int J Pharm. 511(2):794–803

    CAS  PubMed  Google Scholar 

  42. Strickland DK, Au DT, Cunfer P, Muratoglu SC (2014) Low-density lipoprotein receptor-related protein-1: role in the regulation of vascular integrity. Arterioscler Thromb Vasc Biol. 34(3):487–498

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bertrand Y, Currie JC, Poirier J, Demeule M, Abulrob A, Fatehi D, Stanimirovic D, Sartelet H, Castaigne JP, Béliveau R (2011) Influence of glioma tumor microenvironment on the transport of ANG1005 via low-density lipoprotein receptor-related protein 1. Br J Cancer. 105(11):1697–1707

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao K, Wang Q, Wang Y, Huang K, Yang C, Li Y, Yi K, Kang C (2017) EGFR/c-myc axis regulates TGFbeta/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas. Cancer Lett. 406:12–21

    CAS  PubMed  Google Scholar 

  45. Wang W, Zhang H, Liu S, Kim CK, Xu Y, Hurley LA, Nishikawa R, Nagane M, Hu B, Stegh AH, Cheng SY, Cheng C (2017) Internalized CD44s splice isoform attenuates EGFR degradation by targeting Rab7A. Proc Natl Acad Sci U S A. 114(31):8366–8371

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang FY, Kang CS, Wang-Gou SY, Huang CH, Feng CY, Li XJ (2017) EGFL7 is an intercellular EGFR signal messenger that plays an oncogenic role in glioma. Cancer Lett. 384:9–18

    CAS  PubMed  Google Scholar 

  47. Sepulveda-Sanchez JM, Vaz MA, Balana C, Gil-Gil M, Reynes G, Gallego O et al (2017) Phase II trial of dacomitinib, a pan-human EGFR tyrosine kinase inhibitor, in recurrent glioblastoma patients with EGFR amplification. Neuro Oncol. 19(11):1522–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pandita A, Aldape KD, Zadeh G, Guha A, James CD (2004) Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR. Genes Chromosomes Cancer. 39(1):29–36

    CAS  PubMed  Google Scholar 

  49. Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, Van Meir EG (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol. 9(3):469–479

    CAS  PubMed  Google Scholar 

  50. Wick W, Gorlia T, Bady P, Platten M, van den Bent MJ, Taphoorn MJB, Steuve J, Brandes AA, Hamou MF, Wick A, Kosch M, Weller M, Stupp R, Roth P, Golfinopoulos V, Frenel JS, Campone M, Ricard D, Marosi C, Villa S, Weyerbrock A, Hopkins K, Homicsko K, Lhermitte B, Pesce G, Hegi ME (2016) Phase II study of radiotherapy and temsirolimus versus radiochemotherapy with temozolomide in patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation (EORTC 26082). Clinical Cancer Research. 22(19):4797–4806

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (Grant No. 81772665), Jiangsu Province, Key Research & Development Plan of Jiangsu Province (No. BE2016646), Jiangsu provincial Commission of Health and Family Planning (Grant No. Q201608), Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX18_2197), and Six Talents Peak Foundation of Jiangsu Province (No. 2018-WSW-071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Liu.

Ethics declarations

Ethics approval and consent to participate

This study was performed according to the guidelines for the Care and Use of Laboratory Animals and the animal experimental protocols were approved by Xuzhou Medical University of China Animal Care and Use Committee.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chengkun Ye, Bomin Pan, Haoyue Xu. These authors contributed to this paper equally.

Electronic supplementary material

ESM 1

(DOCX 1087 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, C., Pan, B., Xu, H. et al. Co-delivery of GOLPH3 siRNA and gefitinib by cationic lipid-PLGA nanoparticles improves EGFR-targeted therapy for glioma. J Mol Med 97, 1575–1588 (2019). https://doi.org/10.1007/s00109-019-01843-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01843-4

Keywords

Navigation