Skip to main content

Advertisement

Log in

mTOR and regulation of energy homeostasis in humans

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Patients treated with the mammalian or mechanistic target of rapamycin (mTOR) inhibitor everolimus in order to slow progression of autosomal-dominant polycystic kidney disease (ADPKD) showed a significant reduction of body weight. Although the detailed mechanism of how mTOR inhibition interferes with body weight regulation is rather unclear, present data suggest that this effect is mediated by both central and peripheral mechanisms. These findings in ADPKD patients are in contrast to well-documented effects of hypothalamic mTOR on regulation of energy homeostasis and eating behavior in rodents. In a number of rodent models, the mTOR inhibitor rapamycin induces increased food intake, which is accompanied by increased body weight. However, animal data are inconsistent. This review highlights some of the regulatory signals and key mechanisms that are important for balancing energy intake and energy expenditure with a special focus on adipose tissue-derived adipokines and their interaction with mTOR regarding local regulation of tissue perfusion and metabolism and overall systemic energy homeostasis. Specifically, clinical aspects of an impaired mTOR signaling pathway regarding the development of obesity and type-2 diabetes mellitus will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Mammalian or mechanistic target of rapamycin

References

  1. Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A et al (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103:5466–5471

    Article  PubMed  CAS  Google Scholar 

  2. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5:578–581

    Article  PubMed  CAS  Google Scholar 

  3. Pan D, Dong J, Zhang Y, Gao X (2004) Tuberous sclerosis complex: from Drosophila to human disease. Trends Cell Biol 14:78–85

    Article  PubMed  CAS  Google Scholar 

  4. Li Y, Corradetti MN, Inoki K, Guan KL (2004) TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci 29:32–38

    Article  PubMed  Google Scholar 

  5. Walz G, Budde K, Mannaa M, Nurnberger J, Wanner C, Sommerer C, Kunzendorf U, Banas B, Horl WH, Obermuller N et al (2010) Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363:830–840

    Article  PubMed  CAS  Google Scholar 

  6. Rovira J, Marcelo Arellano E, Burke JT, Brault Y, Moya-Rull D, Banon-Maneus E, Ramirez-Bajo MJ, Gutierrez-Dalmau A, Revuelta I, Quintana LF et al (2008) Effect of mTOR inhibitor on body weight: from an experimental rat model to human transplant patients. Transpl Int Off J Eur Soc Organ Transplant 21:992–998

    Article  Google Scholar 

  7. Dabora SL, Franz DN, Ashwal S, Sagalowsky A, DiMario FJ Jr, Miles D, Cutler D, Krueger D, Uppot RN, Rabenou R et al (2011) Multicenter phase 2 trial of sirolimus for tuberous sclerosis: kidney angiomyolipomas and other tumors regress and VEGF-D levels decrease. PLoS One 6:e23379

    Article  PubMed  CAS  Google Scholar 

  8. Deblon N, Bourgoin L, Veyrat-Durebex C, Peyrou M, Vinciguerra M, Caillon A, Maeder C, Fournier M, Montet X, Rohner-Jeanrenaud F et al (2012) Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats. Br J Pharmacol 165:2325–2340

    Article  PubMed  CAS  Google Scholar 

  9. Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, Berthault MF, Magnan C, Cerasi E, Kaiser N et al (2008) mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57:945–957

    Article  PubMed  CAS  Google Scholar 

  10. Kramer S, Wang-Rosenke Y, Scholl V, Binder E, Loof T, Khadzhynov D, Kawachi H, Shimizu F, Diekmann F, Budde K et al (2008) Low-dose mTOR inhibition by rapamycin attenuates progression in anti-thy1-induced chronic glomerulosclerosis of the rat. Am J Physiol Ren Physiol 294:F440–F449

    Article  Google Scholar 

  11. Wahl PR, Serra AL, Le Hir M, Molle KD, Hall MN, Wuthrich RP (2006) Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant 21:598–604

    Article  PubMed  CAS  Google Scholar 

  12. Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Antoch MP, Blagosklonny MV (2010) Rapamycin extends maximal lifespan in cancer-prone mice. Am J Pathol 176:2092–2097

    Article  PubMed  CAS  Google Scholar 

  13. Korfhagen TR, Le Cras TD, Davidson CR, Schmidt SM, Ikegami M, Whitsett JA, Hardie WD (2009) Rapamycin prevents transforming growth factor-alpha-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 41:562–572

    Article  PubMed  CAS  Google Scholar 

  14. Chang GR, Chiu YS, Wu YY, Chen WY, Liao JW, Chao TH, Mao FC (2009) Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice. J Pharmacol Sci 109:496–503

    Article  PubMed  CAS  Google Scholar 

  15. Blouet C, Ono H, Schwartz GJ (2008) Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metabol 8:459–467

    Article  CAS  Google Scholar 

  16. Cota D, Proulx K, Smith KAB, Kozma SC, Thomas G, Woods SC, Seeley RJ (2006) Hypothalamic mTOR signaling regulates food intake. Science 312:927–930

    Article  PubMed  CAS  Google Scholar 

  17. Kahn BB, Myers MG (2006) mTOR tells the brain that the body is hungry. Nat Med 12:615–617

    Article  PubMed  CAS  Google Scholar 

  18. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443:289–295

    Article  PubMed  CAS  Google Scholar 

  19. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  PubMed  CAS  Google Scholar 

  20. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, Hobday TJ, Okusaka T, Capdevila J, de Vries EG et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364:514–523

    Article  PubMed  CAS  Google Scholar 

  21. Seeliger H, Guba M, Kleespies A, Jauch KW, Bruns CJ (2007) Role of mTOR in solid tumor systems: a therapeutical target against primary tumor growth, metastases, and angiogenesis. Cancer Metastasis Rev 26:611–621

    Article  PubMed  Google Scholar 

  22. Chang SH, McDonald SP (2008) Post-kidney transplant weight change as marker of poor survival outcomes. Transplantation 85:1443–1448

    Article  PubMed  Google Scholar 

  23. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS et al (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638–1643

    Article  PubMed  CAS  Google Scholar 

  24. Figlin RA, Kaufmann I, Brechbiel J (2013) Targeting PI3K and mTORC2 in metastatic renal cell carcinoma: New strategies for overcoming resistance to VEGFR and mTORC1 inhibitors. Int J Cancer. doi:10.1002/ijc.28023

    PubMed  Google Scholar 

  25. Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J (2008) Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci USA 105:17414–17419

    Article  PubMed  CAS  Google Scholar 

  26. Dennis MD, Kimball SR, Jefferson LS (2013) Mechanistic target of rapamycin complex 1 (mTORC1)-mediated phosphorylation is governed by competition between substrates for interaction with raptor. J Biol Chem 288:10–19

    Article  PubMed  CAS  Google Scholar 

  27. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol CB 14:1296–1302

    Article  CAS  Google Scholar 

  28. Cota D, Marsicano G, Tschöp M, Grübler Y, Flachskamm C, Schubert M, Auer D, Yassouridis A, Thöne-Reineke C, Ortmann S et al (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112:423–431

    PubMed  CAS  Google Scholar 

  29. Ropelle ER, Pauli JR, Fernandes MFA, Rocco SA, Marin RM, Morari J, Souza KK, Dias MM, Gomes-Marcondes MC, Gontijo JAR et al (2008) A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes 57:594–605

    Article  PubMed  CAS  Google Scholar 

  30. Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G (2001) Mammalian TOR: a homeostatic ATP sensor. Science 294:1102–1105

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

  32. Schwartz MW, Erickson JC, Baskin DG, Palmiter RD (1998) Effect of fasting and leptin deficiency on hypothalamic neuropeptide Y gene transcription in vivo revealed by expression of a lacZ reporter gene. Endocrinology 139:2629–2635

    Article  PubMed  CAS  Google Scholar 

  33. Schwartz MW, Porte D Jr (2005) Diabetes, obesity, and the brain. Science 307:375–379

    Article  PubMed  CAS  Google Scholar 

  34. Kadowaki T, Yamauchi T, Kubota N (2008) The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Lett 582:74–80

    Article  PubMed  CAS  Google Scholar 

  35. Kopin AS, Mathes WF, McBride EW, Nguyen M, Al-Haider W, Schmitz F, Bonner-Weir S, Kanarek R, Beinborn M (1999) The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J Clin Invest 103:383–391

    Article  PubMed  CAS  Google Scholar 

  36. Little TJ, Horowitz M, Feinle-Bisset C (2005) Role of cholecystokinin in appetite control and body weight regulation. Obes Rev Off J Int Assoc Study Obes 6:297–306

    Article  CAS  Google Scholar 

  37. Weyer C, Maggs DG, Young AA, Kolterman OG (2001) Amylin replacement with pramlintide as an adjunct to insulin therapy in type 1 and type 2 diabetes mellitus: a physiological approach toward improved metabolic control. Curr Pharm Des 7:1353–1373

    Article  PubMed  CAS  Google Scholar 

  38. Barth SW, Riediger T, Lutz TA, Rechkemmer G (2004) Peripheral amylin activates circumventricular organs expressing calcitonin receptor a/b subtypes and receptor-activity modifying proteins in the rat. Brain Res 997:97–102

    Article  PubMed  CAS  Google Scholar 

  39. Roth JD, Erickson MR, Chen S, Parkes DG (2012) GLP-1R and amylin agonism in metabolic disease: complementary mechanisms and future opportunities. Br J Pharmacol 166:121–136

    Article  PubMed  CAS  Google Scholar 

  40. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198

    Article  PubMed  CAS  Google Scholar 

  41. Kharitonenkov A, Larsen P (2011) FGF21 reloaded: challenges of a rapidly growing field. Trends Endocrinol Metab TEM 22:81–86

    Article  CAS  Google Scholar 

  42. Lim CT, Kola B, Korbonits M (2010) AMPK as a mediator of hormonal signalling. J Mol Endocrinol 44:87–97

    Article  PubMed  CAS  Google Scholar 

  43. Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D, Small CJ (2004) AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279:12005–12008

    Article  PubMed  CAS  Google Scholar 

  44. Kola B, Hubina E, Tucci SA, Kirkham TC, Garcia EA, Mitchell SE, Williams LM, Hawley SA, Hardie DG, Grossman AB et al (2005) Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem 280:25196–25201

    Article  PubMed  CAS  Google Scholar 

  45. Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, Kozono H, Takamoto I, Okamoto S, Shiuchi T et al (2007) Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6:55–68

    Article  PubMed  CAS  Google Scholar 

  46. Wen JP, Liu CE, Hu YT, Chen G, Lin LX (2010) Globular adiponectin regulates energy homeostasis through AMP-activated protein kinase-acetyl-CoA carboxylase (AMPK/ACC) pathway in the hypothalamus. Mol Cell Biochem 344:109–115

    Article  PubMed  CAS  Google Scholar 

  47. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferre P, Birnbaum MJ et al (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428:569–574

    Article  PubMed  CAS  Google Scholar 

  48. Scerif M, Goldstone AP, Korbonits M (2011) Ghrelin in obesity and endocrine diseases. Mol Cell Endocrinol 340:15–25

    Article  PubMed  CAS  Google Scholar 

  49. Boschmann M, Mannaa M, Pfennigwerth P, Gaedeke J, Budde K, Gollasch M (2011) Everolimus und Energiemetabolismus bei Patienten mit autosomal-dominant vererbbarer Zystennierenerkrankung. 3 Jahrestagung der Deutschen Gesellschaft für Nephrologie, Berlin A44-11/1424

  50. Fliedner S, Schulz C, Lehnert H (2006) Brain uptake of intranasally applied radioiodinated leptin in Wistar rats. Endocrinology 147:2088–2094

    Article  PubMed  CAS  Google Scholar 

  51. Banks WA (2001) Leptin transport across the blood–brain barrier: implications for the cause and treatment of obesity. Curr Pharm Des 7:125–133

    Article  PubMed  CAS  Google Scholar 

  52. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161

    Article  PubMed  CAS  Google Scholar 

  53. Sweeney G (2002) Leptin signalling. Cell Signal 14:655–663

    Article  PubMed  CAS  Google Scholar 

  54. Wauman J, Tavernier J (2011) Leptin receptor signaling: pathways to leptin resistance. Front Biosci J Virtual Lib 17:2771–2793

    Article  Google Scholar 

  55. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, Hamnvik OP, Koniaris A (2011) Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 301:E567–E584

    Article  PubMed  CAS  Google Scholar 

  56. Marshall S (2006) Role of insulin, adipocyte hormones, and nutrient-sensing pathways in regulating fuel metabolism and energy homeostasis: a nutritional perspective of diabetes, obesity, and cancer. Sci STKE Sig Transduct Knowl Environ 2006:re7. doi:10.1126/stke.3462006re7

    Article  Google Scholar 

  57. Cota D, Matter EK, Woods SC, Seeley RJ (2008) The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. J Neurosci 28:7202–7208

    Article  PubMed  CAS  Google Scholar 

  58. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    Article  PubMed  CAS  Google Scholar 

  59. Cho HJ, Park J, Lee HW, Lee YS, Kim JB (2004) Regulation of adipocyte differentiation and insulin action with rapamycin. Biochem Biophys Res Commun 321:942–948

    Article  PubMed  CAS  Google Scholar 

  60. Bradley RL, Cheatham B (1999) Regulation of ob gene expression and leptin secretion by insulin and dexamethasone in rat adipocytes. Diabetes 48:272–278

    Article  PubMed  CAS  Google Scholar 

  61. Hinault C, Mothe-Satney I, Gautier N, Lawrence JC Jr, Van Obberghen E (2004) Amino acids and leucine allow insulin activation of the PKB/mTOR pathway in normal adipocytes treated with wortmannin and in adipocytes from db/db mice. FASEB Off Publ Fed Am Soc Exp Biol 18:1894–1896

    CAS  Google Scholar 

  62. Burguera B, Couce ME, Curran GL, Jensen MD, Lloyd RV, Cleary MP, Poduslo JF (2000) Obesity is associated with a decreased leptin transport across the blood–brain barrier in rats. Diabetes 49:1219–1223

    Article  PubMed  CAS  Google Scholar 

  63. Vila R, Adan C, Rafecas I, Fernandez-Lopez JA, Remesar X, Alemany M (1998) Plasma leptin turnover rates in lean and obese Zucker rats. Endocrinology 139:4466–4469

    Article  PubMed  CAS  Google Scholar 

  64. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270:26746–26749

    Article  PubMed  CAS  Google Scholar 

  65. Fesus G, Dubrovska G, Gorzelniak K, Kluge R, Huang Y, Luft FC, Gollasch M (2007) Adiponectin is a novel humoral vasodilator. Cardiovasc Res 75:719–727

    Article  PubMed  Google Scholar 

  66. Coope A, Milanski M, Araujo EP, Tambascia M, Saad MJ, Geloneze B, Velloso LA (2008) AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus. FEBS Lett 582:1471–1476

    Article  PubMed  CAS  Google Scholar 

  67. Takeuchi T, Adachi Y, Ohtsuki Y, Furihata M (2007) Adiponectin receptors, with special focus on the role of the third receptor, T-cadherin, in vascular disease. Med Mol Morphol 40:115–120

    Article  PubMed  CAS  Google Scholar 

  68. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792

    Article  PubMed  CAS  Google Scholar 

  69. Rabe K, Lehrke M, Parhofer KG, Broedl UC (2008) Adipokines and insulin resistance. Mol Med 14:741–751

    Article  PubMed  CAS  Google Scholar 

  70. Suzuki M, Uehara Y, Motomura-Matsuzaka K, Oki J, Koyama Y, Kimura M, Asada M, Komi-Kuramochi A, Oka S, Imamura T (2008) betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 22:1006–1014

    Article  PubMed  CAS  Google Scholar 

  71. Ogawa Y, Kurosu H, Yamamoto M, Nandi A, Rosenblatt KP, Goetz R, Eliseenkova AV, Mohammadi M, Kuro-o M (2007) BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA 104:7432–7437

    Article  PubMed  CAS  Google Scholar 

  72. Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T, Nabeshima YI (2000) Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech Dev 98:115–119

    Article  PubMed  CAS  Google Scholar 

  73. Kojima M, Kangawa K (2010) Ghrelin: from gene to physiological function. Results Probl Cell Differ 50:185–205

    Article  PubMed  CAS  Google Scholar 

  74. Egecioglu E, Stenstrom B, Pinnock SB, Tung LY, Dornonville de la Cour C, Lindqvist A, Hakanson R, Syversen U, Chen D, Dickson SL (2008) Hypothalamic gene expression following ghrelin therapy to gastrectomized rodents. Regul Pept 146:176–182

    Article  PubMed  CAS  Google Scholar 

  75. Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML et al (2003) The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37:649–661

    Article  PubMed  CAS  Google Scholar 

  76. Zamani N, Brown CW (2011) Emerging roles for the transforming growth factor-{beta} superfamily in regulating adiposity and energy expenditure. Endocr Rev 32:387–403

    Article  PubMed  CAS  Google Scholar 

  77. Ebendal T, Bengtsson H, Soderstrom S (1998) Bone morphogenetic proteins and their receptors: potential functions in the brain. J Neurosci Res 51:139–146

    Article  PubMed  CAS  Google Scholar 

  78. Townsend KL, Suzuki R, Huang TL, Jing E, Schulz TJ, Lee K, Taniguchi CM, Espinoza DO, McDougall LE, Zhang H et al (2012) Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway. FASEB Jour Off Publ Fed Am Soc Exp Biol. doi:10.1096/fj.11-199067

    Google Scholar 

  79. Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004

    Article  PubMed  CAS  Google Scholar 

  80. Eberlein GA, Eysselein VE, Goebell H (1988) Cholecystokinin-58 is the major molecular form in man, dog and cat but not in pig, beef and rat intestine. Peptides 9:993–998

    Article  PubMed  CAS  Google Scholar 

  81. Rehfeld JF, Sun G, Christensen T, Hillingso JG (2001) The predominant cholecystokinin in human plasma and intestine is cholecystokinin-33. J Clin Endocrinol Metab 86:251–258

    Article  PubMed  CAS  Google Scholar 

  82. Moran TH, Kinzig KP (2004) Gastrointestinal satiety signals II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol 286:G183–G188

    Article  PubMed  CAS  Google Scholar 

  83. Kissileff HR, Pi-Sunyer FX, Thornton J, Smith GP (1981) C-terminal octapeptide of cholecystokinin decreases food intake in man. Am J Clin Nutr 34:154–160

    PubMed  CAS  Google Scholar 

  84. Lembke V, Goebel M, Frommelt L, Inhoff T, Lommel R, Stengel A, Tache Y, Grotzinger C, Bannert N, Wiedenmann B et al (2011) Sulfated cholecystokinin-8 activates phospho-mTOR immunoreactive neurons of the paraventricular nucleus in rats. Peptides 32:65–70

    Article  PubMed  CAS  Google Scholar 

  85. Chearskul S, Delbridge E, Shulkes A, Proietto J, Kriketos A (2008) Effect of weight loss and ketosis on postprandial cholecystokinin and free fatty acid concentrations. Am J Clin Nutr 87:1238–1246

    PubMed  CAS  Google Scholar 

  86. Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, Proietto J (2011) Long-term persistence of hormonal adaptations to weight loss. N Engl J Med 365:1597–1604

    Article  PubMed  CAS  Google Scholar 

  87. Boschmann M, Ringel J, Klaus S, Sharma AM (2001) Metabolic and hemodynamic response of adipose tissue to angiotensin II. Obes Res 9:486–491

    Article  PubMed  CAS  Google Scholar 

  88. Boschmann M, Jordan J, Schmidt S, Adams F, Luft FC, Klaus S (2002) Gender-specific response to interstitial angiotensin II in human white adipose tissue. Horm Metab Res Horm Stoffwechselforschung Horm Metab 34:726–730

    Article  CAS  Google Scholar 

  89. Jordan J, Engeli S, Boschmann M, Weidinger G, Luft FC, Sharma AM, Kreuzberg U (2005) Hemodynamic and metabolic responses to valsartan and atenolol in obese hypertensive patients. J Hypertens 23:2313–2318

    Article  PubMed  CAS  Google Scholar 

  90. Engeli S, Schling P, Gorzelniak K, Boschmann M, Janke J, Ailhaud G, Teboul M, Massiera F, Sharma AM (2003) The adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome? Int J Biochem Cell Biol 35:807–825

    Article  PubMed  CAS  Google Scholar 

  91. Boschmann M, Kreuzberg U, Engeli S, Adams F, Franke G, Klaua S, Scholze J, Weidinger G, Luft FC, Sharma AM et al (2006) The effect of oral glucose loads on tissue metabolism during angiotensin II receptor and beta-receptor blockade in obese hypertensive subjects. Horm Metab Res Horm Stoffwechselforschung Horm Metab 38:323–329

    Article  CAS  Google Scholar 

  92. Lohn M, Kampf D, Gui-Xuan C, Haller H, Luft FC, Gollasch M (2002) Regulation of arterial tone by smooth muscle myosin type II. Am J Physiol Cell Physiol 283:C1383–C1389

    Article  PubMed  CAS  Google Scholar 

  93. Gollasch M, Dubrovska G (2004) Paracrine role for periadventitial adipose tissue in the regulation of arterial tone. Trends Pharmacol Sci 25:647–653

    Article  PubMed  CAS  Google Scholar 

  94. Gollasch M (2012) Vasodilator signals from perivascular adipose tissue. Br J Pharmacol 165:633–642

    Article  PubMed  CAS  Google Scholar 

  95. Ma L, Ma S, He H, Yang D, Chen X, Luo Z, Liu D, Zhu Z (2010) Perivascular fat-mediated vascular dysfunction and remodeling through the AMPK/mTOR pathway in high-fat diet-induced obese rats. Hypertens Res Off J Jpn Soc Hypertens 33:446–453

    Article  CAS  Google Scholar 

  96. Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S (2003) Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 107:1664–1670

    Article  PubMed  CAS  Google Scholar 

  97. De Angel RE, Conti CJ, Wheatley KE, Brenner AJ, Otto G, Degraffenried LA, Hursting SD (2012) The enhancing effects of obesity on mammary tumor growth and Akt/mTOR pathway activation persist after weight loss and are reversed by RAD001. Mol Carcinog. doi:10.1002/mc.21878

    PubMed  Google Scholar 

  98. Lloberas N, Cruzado JM, Franquesa M, Herrero-Fresneda I, Torras J, Alperovich G, Rama I, Vidal A, Grinyo JM (2006) Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol 17:1395–1404

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors report no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marwan Mannaa or Maik Gollasch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannaa, M., Krämer, S., Boschmann, M. et al. mTOR and regulation of energy homeostasis in humans. J Mol Med 91, 1167–1175 (2013). https://doi.org/10.1007/s00109-013-1057-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1057-6

Keywords

Navigation