Skip to main content

Advertisement

Log in

Generating cells of the gastrointestinal system: current approaches and applications for the differentiation of human pluripotent stem cells

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, are defined by their abilities to self-renew and to differentiate into any cell type of the human body. Due to these unique properties, hPSCs represent a potentially unlimited source of cells/tissues for cell replacement therapies. Use of these cells may also revolutionize the way drugs are discovered, designed, and tested. Furthermore, the study of how cells differentiate can also change our understanding of complex human biology and disease. For these reasons, scientists have dedicated significant time and effort to generate specific cell types from hPSCs with therapeutic potential, including cells derived from the definitive endoderm germ layer such as liver cells (hepatocytes) and pancreatic β cells. In this review, we will focus broadly on the most advanced differentiation strategies currently employed to differentiate hPSCs to endodermal lineages such as the liver, pancreas, and intestine as well as the principles of developmental biology around which these protocols were designed. This will be followed by a brief discussion of the vast potential of these systems as suitable in vitro models for human embryonic development and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  2. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  PubMed  CAS  Google Scholar 

  3. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  4. Rosenblatt RL (2009) Lung transplantation in cystic fibrosis. Respir Care 54:777–786, discussion 786-777

    Article  PubMed  Google Scholar 

  5. Shapiro AMJ, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, Secchi A, Brendel MD, Berney T, Brennan DC et al (2006) International trial of the Edmonton protocol for islet transplantation. N Engl J Med 355:1318–1330

    Article  PubMed  CAS  Google Scholar 

  6. Gane EJ, Portmann BC, Naoumov NV, Smith HM, Underhill JA, Donaldson PT, Maertens G, Williams R (1996) Long-term outcome of hepatitis C infection after liver transplantation. N Engl J Med 334:815–821

    Article  PubMed  CAS  Google Scholar 

  7. Samuel D, Muller R, Alexander G, Fassati L, Ducot B, Benhamou J-P, Bismuth H (1993) Liver transplantation in European patients with the hepatitis B surface antigen. N Engl J Med 329:1842–1847

    Article  PubMed  CAS  Google Scholar 

  8. Lawson KA, Pedersen RA (1987) Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse. Development 101:627–652

    PubMed  CAS  Google Scholar 

  9. Lawson KA, Meneses JJ, Pedersen RA (1991) Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113:891–911

    PubMed  CAS  Google Scholar 

  10. Rodaway A, Takeda H, Koshida S, Broadbent J, Price B, Smith JC, Patient R, Holder N (1999) Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. Development 126:3067–3078

    PubMed  CAS  Google Scholar 

  11. Zorn AM, Wells JM (2009) Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25:221–251

    Article  PubMed  CAS  Google Scholar 

  12. Green JB, Smith JC (1990) Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347:391–394

    Article  PubMed  CAS  Google Scholar 

  13. Clements D, Friday RV, Woodland HR (1999) Mode of action of VegT in mesoderm and endoderm formation. Development 126:4903–4911

    PubMed  CAS  Google Scholar 

  14. Aoki TO, David NB, Minchiotti G, Saint-Etienne L, Dickmeis T, Persico GM, Strahle U, Mourrain P, Rosa FM (2002) Molecular integration of casanova in the Nodal signalling pathway controlling endoderm formation. Development 129:275–286

    PubMed  CAS  Google Scholar 

  15. Ben-Haim N, Lu C, Guzman-Ayala M, Pescatore L, Mesnard D, Bischofberger M, Naef F, Robertson EJ, Constam DB (2006) The Nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev Cell 11:313–323

    Article  PubMed  CAS  Google Scholar 

  16. Hagos EG, Dougan ST (2007) Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish. BMC Dev Biol 7:22

    Article  PubMed  Google Scholar 

  17. Tremblay KD, Hoodless PA, Bikoff EK, Robertson EJ (2000) Formation of the definitive endoderm in mouse is a Smad2-dependent process. Development 127:3079–3090

    PubMed  CAS  Google Scholar 

  18. Lowe LA, Yamada S, Kuehn MR (2001) Genetic dissection of nodal function in patterning the mouse embryo. Development 128:1831–1843

    PubMed  CAS  Google Scholar 

  19. Vincent SD, Dunn NR, Hayashi S, Norris DP, Robertson EJ (2003) Cell fate decisions within the mouse organizer are governed by graded Nodal signals. Genes Dev 17:1646–1662

    Article  PubMed  CAS  Google Scholar 

  20. Tada S, Era T, Furusawa C, Sakurai H, Nishikawa S, Kinoshita M, Nakao K, Chiba T (2005) Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132:4363–4374

    Article  PubMed  CAS  Google Scholar 

  21. D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541

    Article  PubMed  Google Scholar 

  22. McLean AB, D'Amour KA, Jones KL, Krishnamoorthy M, Kulik MJ, Reynolds DM, Sheppard AM, Liu H, Xu Y, Baetge EE et al (2007) Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25:29–38

    Article  PubMed  CAS  Google Scholar 

  23. Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H (2009) Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 19:429–438

    Article  PubMed  CAS  Google Scholar 

  24. D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401

    Article  PubMed  Google Scholar 

  25. Bone HK, Nelson AS, Goldring CE, Tosh D, Welham MJ (2011) A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3. J Cell Sci 124:1992–2000

    Article  PubMed  CAS  Google Scholar 

  26. Hay DC, Fletcher J, Payne C, Terrace JD, Gallagher RCJ, Snoeys J, Black JR, Wojtacha D, Samuel K, Hannoun Z et al (2008) Highly efficient differentiation of hESCs to functional hepatic endoderm requires Activin A and Wnt3a signaling. Proc Natl Acad Sci 105:12301–12306

    Article  PubMed  CAS  Google Scholar 

  27. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    Article  PubMed  CAS  Google Scholar 

  28. Pan Y, Ouyang Z, Wong WH, Baker JC (2011) A new FACS approach isolates hESC derived endoderm using transcription factors. PLoS One 6:e17536

    Article  PubMed  CAS  Google Scholar 

  29. Wang P, Rodriguez RT, Wang J, Ghodasara A, Kim SK (2011) Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm. Cell Stem Cell 8:335–346

    Article  PubMed  Google Scholar 

  30. Cao S, Esquivel M, Carlos O, Keeffe M, Emmet B (1998) New approaches to supporting the failing liver. Annu Rev Med 49:85–94

    Article  PubMed  CAS  Google Scholar 

  31. Fox IJ, Roy-Chowdhury J (2004) Hepatocyte transplantation. J Hepatol 40:878–886

    Article  PubMed  CAS  Google Scholar 

  32. Puppi J, Dhawan A (2009) Human hepatocyte transplantation overview. Methods Mol Biol 481:1–16

    Article  PubMed  CAS  Google Scholar 

  33. Penn I (1991) Hepatic transplantation for primary and metastatic cancers of the liver. Surgery 110:726–734, discussion 734-725

    PubMed  CAS  Google Scholar 

  34. Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F, Montalto F, Ammatuna M, Morabito A, Gennari L (1996) Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 334:693–699

    Article  PubMed  CAS  Google Scholar 

  35. Stummann TC, Bremer S (2008) The possible impact of human embryonic stem cells on safety pharmacological and toxicological assessments in drug discovery and drug development. Curr Stem Cell Res Ther 3:118–131

    Article  PubMed  Google Scholar 

  36. Hay DC, Zhao D, Ross A, Mandalam R, Lebkowski J, Cui W (2007) Direct differentiation of human embryonic stem cells to hepatocyte-like cells exhibiting functional activities. Cloning Stem Cells 9:51–62

    Article  PubMed  CAS  Google Scholar 

  37. Touboul T, Hannan NR, Corbineau S, Martinez A, Martinet C, Branchereau S, Mainot S, Strick-Marchand H, Pedersen R, Di Santo J et al (2010) Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51:1754–1765

    Article  PubMed  CAS  Google Scholar 

  38. Jung J, Zheng M, Goldfarb M, Zaret KS (1999) Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284:1998–2003

    Article  PubMed  CAS  Google Scholar 

  39. Rossi JM, Dunn NR, Hogan BL, Zaret KS (2001) Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 15:1998–2009

    Article  PubMed  CAS  Google Scholar 

  40. Deutsch G, Jung J, Zheng M, Lora J, Zaret KS (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128:871–881

    PubMed  CAS  Google Scholar 

  41. Zhao D, Chen S, Cai J, Guo Y, Song Z, Che J, Liu C, Wu C, Ding M, Deng H (2009) Derivation and characterization of hepatic progenitor cells from human embryonic stem cells. PLoS One 4:e6468

    Article  PubMed  Google Scholar 

  42. Song Z, Cai J, Liu Y, Zhao D, Yong J, Duo S, Song X, Guo Y, Zhao Y, Qin H et al (2009) Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res 19:1233–1242

    Article  PubMed  Google Scholar 

  43. Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, Meng S, Chen Y, Zhou R, Song X et al (2007) Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45:1229–1239

    Article  PubMed  CAS  Google Scholar 

  44. Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, North PE, Dalton S, Duncan SA (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51:297–305

    Article  PubMed  CAS  Google Scholar 

  45. Brolen G, Sivertsson L, Bjorquist P, Eriksson G, Ek M, Semb H, Johansson I, Andersson TB, Ingelman-Sundberg M, Heins N (2010) Hepatocyte-like cells derived from human embryonic stem cells specifically via definitive endoderm and a progenitor stage. J Biotechnol 145:284–294

    Article  PubMed  CAS  Google Scholar 

  46. Duan Y, Catana A, Meng Y, Yamamoto N, He S, Gupta S, Gambhir SS, Zern MA (2007) Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 25:3058–3068

    Article  PubMed  CAS  Google Scholar 

  47. Asgari S, Moslem M, Bagheri-Lankarani K, Pournasr B, Miryounesi M, Baharvand H (2011) Differentiation and transplantation of human induced pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Rev Rep: 1–12. doi:10.1007/s12015-011-9330-y

  48. Xu X, Browning VL, Odorico JS (2011) Activin, BMP and FGF pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells. Mech Dev 128:412–427

    Article  PubMed  Google Scholar 

  49. Jiang J, Au M, Lu K, Eshpeter A, Korbutt G, Fisk G, Majumdar AS (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25:1940–1953

    Article  PubMed  CAS  Google Scholar 

  50. Johannesson M, Stahlberg A, Ameri J, Sand FW, Norrman K, Semb H (2009) FGF4 and retinoic acid direct differentiation of hESCs into PDX1-expressing foregut endoderm in a time- and concentration-dependent manner. PLoS One 4:e4794

    Article  PubMed  Google Scholar 

  51. Mfopou JK, Chen B, Mateizel I, Sermon K, Bouwens L (2010) Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Gastroenterology 138:2233–2245

    Article  PubMed  CAS  Google Scholar 

  52. Cai J, Yu C, Liu Y, Chen S, Guo Y, Yong J, Lu W, Ding M, Deng H (2010) Generation of homogeneous PDX1(+) pancreatic progenitors from human ES cell-derived endoderm cells. J Mol Cell Biol 2:50–60

    Article  PubMed  CAS  Google Scholar 

  53. Jiang W, Shi Y, Zhao D, Chen S, Yong J, Zhang J, Qing T, Sun X, Zhang P, Ding M et al (2007) In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 17:333–344

    Article  PubMed  CAS  Google Scholar 

  54. Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X, Micallef SJ, Park I-H, Basford C, Wheeler MB et al (2011) Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138:861–871

    Article  PubMed  CAS  Google Scholar 

  55. De Moerlooze L, Spencer-Dene B, Revest JM, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127:483–492

    PubMed  Google Scholar 

  56. Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, Bellusci S, Scharfmann R (2001) Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128:5109–5117

    PubMed  CAS  Google Scholar 

  57. Elghazi L, Cras-Meneur C, Czernichow P, Scharfmann R (2002) Role for FGFR2IIIb-mediated signals in controlling pancreatic endocrine progenitor cell proliferation. Proc Natl Acad Sci U S A 99:3884–3889

    Article  PubMed  CAS  Google Scholar 

  58. Stafford D, Prince VE (2002) Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol 12:1215–1220

    Article  PubMed  CAS  Google Scholar 

  59. Chen Y, Pan FC, Brandes N, Afelik S, Solter M, Pieler T (2004) Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev Biol 271:144–160

    Article  PubMed  CAS  Google Scholar 

  60. Martin M, Gallego-Llamas J, Ribes V, Kedinger M, Niederreither K, Chambon P, Dolle P, Gradwohl G (2005) Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev Biol 284:399–411

    Article  PubMed  CAS  Google Scholar 

  61. Molotkov A, Molotkova N, Duester G (2005) Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev Dyn 232:950–957

    Article  PubMed  CAS  Google Scholar 

  62. Kobayashi H, Spilde TL, Bhatia AM, Buckingham RB, Hembree MJ, Prasadan K, Preuett BL, Imamura M, Gittes GK (2002) Retinoid signaling controls mouse pancreatic exocrine lineage selection through epithelial–mesenchymal interactions. Gastroenterology 123:1331–1340

    Article  PubMed  CAS  Google Scholar 

  63. Tulachan SS, Doi R, Kawaguchi Y, Tsuji S, Nakajima S, Masui T, Koizumi M, Toyoda E, Mori T, Ito D et al (2003) All-trans retinoic acid induces differentiation of ducts and endocrine cells by mesenchymal/epithelial interactions in embryonic pancreas. Diabetes 52:76–84

    Article  PubMed  CAS  Google Scholar 

  64. Shen CN, Marguerie A, Chien CY, Dickson C, Slack JM, Tosh D (2007) All-trans retinoic acid suppresses exocrine differentiation and branching morphogenesis in the embryonic pancreas. Differentiation 75:62–74

    Article  PubMed  CAS  Google Scholar 

  65. Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 97:1607–1611

    Article  PubMed  CAS  Google Scholar 

  66. Schaffer AE, Freude KK, Nelson SB, Sander M (2010) Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Dev Cell 18:1022–1029

    Article  PubMed  CAS  Google Scholar 

  67. Duvillie B, Attali M, Bounacer A, Ravassard P, Basmaciogullari A, Scharfmann R (2006) The mesenchyme controls the timing of pancreatic beta-cell differentiation. Diabetes 55:582–589

    Article  PubMed  CAS  Google Scholar 

  68. Reyes JD (2006) Intestinal transplantation. Semin Pediatr Surg 15:228–234

    Article  PubMed  Google Scholar 

  69. Buchman AL, Scolapio J, Fryer J (2003) AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology 124:1111–1134

    Article  PubMed  Google Scholar 

  70. Kaufman SS, Atkinson JB, Bianchi A, Goulet OJ, Grant D, Langnas AN, McDiarmid SV, Mittal N, Reyes J, Tzakis AG (2001) Indications for pediatric intestinal transplantation: a position paper of the American Society of Transplantation. Pediatr Transplant 5:80–87

    Article  PubMed  CAS  Google Scholar 

  71. Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109

    Article  PubMed  Google Scholar 

  72. Khor B, Gardet A, Xavier RJ (2011) Genetics and pathogenesis of inflammatory bowel disease. Nature 474:307–317

    Article  PubMed  CAS  Google Scholar 

  73. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  74. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345

    Article  PubMed  CAS  Google Scholar 

  75. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336

    Article  PubMed  CAS  Google Scholar 

  76. Crystal RG (1990) Alpha 1-antitrypsin deficiency, emphysema, and liver disease. Genetic basis and strategies for therapy. J Clin Invest 85:1343–1352

    Article  PubMed  CAS  Google Scholar 

  77. Teo AK, Arnold SJ, Trotter MW, Brown S, Ang LT, Chng Z, Robertson EJ, Dunn NR, Vallier L (2011) Pluripotency factors regulate definitive endoderm specification through eomesodermin. Genes Dev 25:238–250

    Article  PubMed  CAS  Google Scholar 

  78. DeLaForest A, Nagaoka M, Si-Tayeb K, Noto FK, Konopka G, Battle MA, Duncan SA (2011) HNF4A is essential for specification of hepatic progenitors from human pluripotent stem cells. Development 138:4143–4153

    Article  PubMed  CAS  Google Scholar 

  79. Jenny M, Uhl C, Roche C, Duluc I, Guillermin V, Guillemot F, Jensen J, Kedinger M, Gradwohl G (2002) Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J 21:6338–6347

    Article  PubMed  CAS  Google Scholar 

  80. Pinney SE, Oliver-Krasinski J, Ernst L, Hughes N, Patel P, Stoffers DA, Russo P, De Leon DD (2011) Neonatal diabetes and congenital malabsorptive diarrhea attributable to a novel mutation in the human neurogenin-3 gene coding sequence. J Clin Endocrinol Metab 96:1960–1965

    Article  PubMed  CAS  Google Scholar 

  81. Rubio-Cabezas O, Jensen JN, Hodgson MI, Codner E, Ellard S, Serup P, Hattersley AT (2011) Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3. Diabetes 60:1349–1353

    Article  PubMed  CAS  Google Scholar 

  82. Wang J, Cortina G, Wu SV, Tran R, Cho JH, Tsai MJ, Bailey TJ, Jamrich M, Ament ME, Treem WR et al (2006) Mutant neurogenin-3 in congenital malabsorptive diarrhea. N Engl J Med 355:270–280

    Article  PubMed  CAS  Google Scholar 

  83. Kim SW, Yoon SJ, Chuong E, Oyolu C, Wills AE, Gupta R, Baker J (2011) Chromatin and transcriptional signatures for Nodal signaling during endoderm formation in hESCs. Dev Biol 357:492–504

    Article  PubMed  CAS  Google Scholar 

  84. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordonez A, Hannan NR, Rouhani FJ et al (2011) Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478:391–394

    Article  PubMed  CAS  Google Scholar 

  85. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294:559–563

    Article  PubMed  CAS  Google Scholar 

  86. Landsman L, Nijagal A, Whitchurch TJ, Vanderlaan RL, Zimmer WE, Mackenzie TC, Hebrok M (2011) Pancreatic mesenchyme regulates epithelial organogenesis throughout development. PLoS Biol 9:e1001143

    Article  PubMed  CAS  Google Scholar 

  87. Yoshitomi H, Zaret KS (2004) Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development 131:807–817

    Article  PubMed  CAS  Google Scholar 

  88. Nikolova G, Jabs N, Konstantinova I, Domogatskaya A, Tryggvason K, Sorokin L, Fassler R, Gu G, Gerber HP, Ferrara N et al (2006) The vascular basement membrane: a niche for insulin gene expression and beta cell proliferation. Dev Cell 10:397–405

    Article  PubMed  CAS  Google Scholar 

  89. Mou H, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, Sicilian L, Izvolsky K, Musunuru K, Cowan C et al (2012) Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell 10:385–397

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in Dr. Sander’s laboratory is supported by grants from the Juvenile Diabetes Research Foundation, the National Institutes of Health (NIH)-National Institute for Diabetes and Digestive and Kidney Diseases, and the NIH Beta Cell Biology Consortium (BCBC). We apologize to our colleagues whose references were omitted due to space constraints. We are also grateful to members of the Sander laboratory for constructive comments on the manuscript.

Conflict of interest

There are no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maike Sander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A., Sander, M. Generating cells of the gastrointestinal system: current approaches and applications for the differentiation of human pluripotent stem cells. J Mol Med 90, 763–771 (2012). https://doi.org/10.1007/s00109-012-0923-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0923-y

Keywords

Navigation