Skip to main content

Advertisement

Log in

Emerging therapeutic approaches in the management of retinal angiogenesis and edema

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Conditions resulting in retinal angiogenesis and edema (exudative age-related macular degeneration, diabetic retinopathy, retinal vein occlusion and retinopathy of prematurity) are major causes of visual impairment, with significant impact on quality of life. There has been increasing clinical usage of anti-vascular endothelial growth factor (anti-VEGF) agents to stop retinal angiogenesis and resolve intraretinal fluid arising from these conditions. However, anti-VEGFs have not been completely successful in curing these conditions, and a range of emerging treatments aimed at supplementing or competing with anti-VEGF agents are being developed. We will discuss the proposed merits these emerging agents bring to the treatment arsenal and how they compare with anti-VEGFs with regards to therapeutic activity, potency, specificity and safety. This review will also highlight recent pre-clinical research findings and suggest where future research might be directed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Buch H, Vinding T, Nielsen NV (2001) Prevalence and causes of visual impairment according to World Health Organization and United States criteria in an aged, urban Scandinavian population: the Copenhagen City Eye Study. Ophthalmology 108:2347–2357

    PubMed  CAS  Google Scholar 

  2. Congdon N, O’Colmain B, Klaver CC, Klein R, Muñoz B, Friedman DS, Kempen J, Taylor HR, Mitchell P, EDPR Group (2004) Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 122:477–485

    PubMed  Google Scholar 

  3. Klein R, Peto T, Bird A, Vannewkirk MR (2004) The epidemiology of age-related macular degeneration. Am J Ophthalmol 137:486–495

    PubMed  Google Scholar 

  4. Rodriguez J, Sanchez R, Munoz B, West SK, Broman A, Snyder RW, Klein R, Quigley H (2002) Causes of blindness and visual impairment in a population-based sample of U.S. Hispanics. Ophthalmology 109:737–743

    PubMed  Google Scholar 

  5. Wong TY, Chong EW, Wong WL, Rosman M, Aung T, Loo JL, Shen S, Loon SC, Tan DT, Tai ES et al (2008) Prevalence and causes of low vision and blindness in an urban malay population: the Singapore Malay Eye Study. Arch Ophthalmol 126:1091–1099

    PubMed  Google Scholar 

  6. Rein DB, Wittenborn JS, Zhang X, Honeycutt AA, Lesesne SB, Saaddine J, VHC-ES Group (2009) Forecasting age-related macular degeneration through the year 2050: the potential impact of new treatments. Arch Ophthalmol 127:533–540

    PubMed  Google Scholar 

  7. Saaddine JB, Honeycutt AA, Narayan KM, Zhang X, Klein R, Boyle JP (2008) Projection of diabetic retinopathy and other major eye diseases among people with diabetes mellitus: United States, 2005–2050. Arch Ophthalmol 126:1740–1747

    PubMed  Google Scholar 

  8. Cunha-Vaz J (1979) The blood-ocular barriers. Surv Ophthalmol 23:279–296

    PubMed  CAS  Google Scholar 

  9. Ryan G, Majno G (1977) Acute inflammation. A review. Am J Pathol 86:183–276

    PubMed  CAS  Google Scholar 

  10. Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28:348–368

    PubMed  Google Scholar 

  11. Ejaz S, Chekarova I, Ejaz A, Sohail A, Lim CW (2008) Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes Metab 10:53–63

    PubMed  CAS  Google Scholar 

  12. VITPS Group (2001) Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization–verteporfin in photodynamic therapy report 2. Am J Ophthalmol 131:541–560

    Google Scholar 

  13. Blumenkranz M (2010) Optimal current and future treatments for diabetic macular oedema. Eye (Lond) 24:428–434

    CAS  Google Scholar 

  14. Mohamed Q, Gillies M, Wong T (2007) Management of diabetic retinopathy: a systematic review. JAMA 298:902–916

    PubMed  CAS  Google Scholar 

  15. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S, AS Group (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355:1432–1444

    PubMed  CAS  Google Scholar 

  16. Brown D, Michels M, Kaiser P, Heier J, Sy J, Ianchulev T, AS Group (2009) Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology 116:57–65

    PubMed  Google Scholar 

  17. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY, MS Group (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431

    PubMed  CAS  Google Scholar 

  18. Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376:124–136

    PubMed  Google Scholar 

  19. Brown DM, Campochiaro PA, Singh RP, Li Z, Gray S, Saroj N, Rundle AC, Rubio RG, Murahashi WY, CRUISE Investigators (2010) Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 117:1124–1133.e1

    PubMed  Google Scholar 

  20. Campochiaro PA, Heier JS, Feiner L, Gray S, Saroj N, Rundle AC, Murahashi WY, Rubio RG, BRAVO Investigators (2010) Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Opthalmology 117:1102–1112.e1

    Google Scholar 

  21. Framme C, Panagakis G, Birngruber R (2009) Effects on choroidal neovascularizations after anti-VEGF upload using intravitreal ranibizumab as determined by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 51(3):1671–1676

    PubMed  Google Scholar 

  22. Witkin AJ, Vuong LN, Srinivasan V, Gorczynska I, Reichel E, Baumal CR, Rogers AH, Schuman JS, Fujimoto JG, Duker JS (2009) High-speed ultrahigh resolution optical coherence tomography before and after ranibizumab for age-related macular degeneration. Ophthalmology 116:956–963

    PubMed  Google Scholar 

  23. Wong TY, Liew G, Mitchell P (2007) Clinical update: new treatments for age-related macular degeneration. Lancet 370:204–206

    PubMed  Google Scholar 

  24. Laude A, Cackett P, Vithana E, Yeo I, Wong D, Koh A, Wong T, Aung T (2010) Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog Retin Eye Res 29:19–29

    PubMed  Google Scholar 

  25. Funk M, Kriechbaum K, Prager F, Benesch T, Georgopoulos M, Zlabinger GJ, Schmidt-Erfurth U (2009) Intraocular concentrations of growth factors and cytokines in retinal vein occlusion and the effect of therapy with bevacizumab. Invest Ophthalmol Vis Sci 50:1025–1032

    PubMed  Google Scholar 

  26. Roh MI, Kim HS, Song JH, Lim JB, Kwon OW (2009) Effect of intravitreal bevacizumab injection on aqueous humor cytokine levels in clinically significant macular edema. Ophthalmology 116:80–86

    PubMed  Google Scholar 

  27. Arimura N, Otsuka H, Yamakiri K, Sonoda Y, Nakao S, Noda Y, Hashiguchi T, Maruyama I, Sakamoto T (2009) Vitreous mediators after intravitreal bevacizumab or triamcinolone acetonide in eyes with proliferative diabetic retinopathy. Ophthalmolgy 116:921–926

    Google Scholar 

  28. Aiello LP (2008) Targeting intraocular neovascularization and edema—one drop at a time. N Engl J Med 359:967–969

    PubMed  CAS  Google Scholar 

  29. Avci B, Avci R, Inan UU, Kaderli B (2009) Comparative evaluation of apoptotic activity in photoreceptor cells after intravitreal injection of bevacizumab and pegaptanib sodium in rabbits. Invest Ophthalmol Vis Sci 50:3438–3446

    PubMed  Google Scholar 

  30. Byeon SH, Lee SC, Choi SH, Lee HK, Lee JH, Chu YK, Kwon OW (2010) Vascular endothelial growth factor as an autocrine survival factor for retinal pigment epithelial cells under oxidative stress via the VEGF-R2/PI3K/Akt. Invest Ophthalmol Vis Sci 51:1190–1197

    PubMed  Google Scholar 

  31. Inan UU, Avci B, Kusbeci T, Kaderli B, Avci R, Temel SG (2007) Preclinical safety evaluation of intravitreal injection of full-length humanized vascular endothelial growth factor antibody in rabbit eyes. Invest Ophthalmol Vis Sci 48:1773–1781

    PubMed  Google Scholar 

  32. Nishijima K, Ng YS, Zhong L, Bradley J, Schubert W, Jo N, Akita J, Samuelsson SJ, Robinson GS, Adamis AP et al (2007) Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 171:53–67

    PubMed  CAS  Google Scholar 

  33. Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D'Amore PA (2009) An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci U S A 106:18751–18756

    PubMed  CAS  Google Scholar 

  34. Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E, Kurihara T, Darland DC, Young MJ, D’Amore PA (2008) Endogenous VEGF is required for visual function: evidence for a survival role on müller cells and photoreceptors. PLoS One 3:e3554

    PubMed  Google Scholar 

  35. Wong TY (2010) Age-related macular degeneration: why should stroke physicians care? Stroke 41:575–576

    PubMed  Google Scholar 

  36. Schmidt-Erfurth U (2010) Clinical safety of ranibizumab in age-related macular degeneration. Exp Opin Drug Saf 9:149–165

    CAS  Google Scholar 

  37. Kaiser PK, TS Group (2006) Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: 5-year results of two randomized clinical trials with an open-label extension: TAP report no. 8. Graefes Arch Clin Exp Ophthalmol 244:1132–1142

    PubMed  CAS  Google Scholar 

  38. Essex RW, Tufail A, Bunce C, Aylward GW (2007) Two-year results of surgical removal of choroidal neovascular membranes related to non-age-related macular degeneration. Br J Ophthalmol 91:649–654

    PubMed  Google Scholar 

  39. Leal EC, Santiago AR, Ambrósio AF (2005) Old and new drug targets in diabetic retinopathy: from biochemical changes to inflammation and neurodegeneration. Curr Drug Targets CNS Neurol Disord 4:421–434

    PubMed  CAS  Google Scholar 

  40. Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH (2009) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 4:e4160

    PubMed  Google Scholar 

  41. Kim SH, Lutz RJ, Wang NS, Robinson MR (2007) Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res 39:244–254

    PubMed  CAS  Google Scholar 

  42. Nicolò M, Ghiglione D, Calabria G (2006) Retinal pigment epithelial tear following intravitreal injection of bevacizumab (Avastin). Eur J Ophthalmol 16:770–773

    PubMed  Google Scholar 

  43. Shah CP, Hsu J, Garg SJ, Fischer DH, Kaiser R (2006) Retinal pigment epithelial tear after intravitreal bevacizumab injection. Am J Ophthalmol 142:1070–1072

    PubMed  CAS  Google Scholar 

  44. Nelson ML, Tennant MT, Sivalingam A, Regillo CD, Belmont JB, Martidis A (2003) Infectious and presumed noninfectious endophthalmitis after intravitreal triamcinolone acetonide injection. Retina 23:686–691

    PubMed  Google Scholar 

  45. Roth DB, Chieh J, Spirn MJ, Green SN, Yarian DL, Chaudhry NA (2003) Noninfectious endophthalmitis associated with intravitreal triamcinolone injection. Arch Ophthalmol 121:1279–1282

    PubMed  Google Scholar 

  46. Ozkiriş A, Erkiliç K (2005) Complications of intravitreal injection of triamcinolone acetonide. Can J Ophthalmol 40:63–68

    PubMed  Google Scholar 

  47. Wulff C, Wilson H, Wiegand SJ, Rudge JS, Fraser HM (2002) Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor Trap R1R2. Endocrinology 143:2797–2807

    PubMed  CAS  Google Scholar 

  48. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E et al (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. PNAS 99:11393–11398

    PubMed  CAS  Google Scholar 

  49. Ni Z, Hui P (2009) Emerging pharmacologic therapies for wet age-related macular degeneration. Ophthalmologica 223:401–410

    PubMed  CAS  Google Scholar 

  50. Simonovic M, Gettins PG, Volz K (2001) Crystal structure of human PEDF, a potent anti-angiogenic and neurite growth-promoting factor. Proc Natl Acad Sci U S A 98:11131–11135

    PubMed  CAS  Google Scholar 

  51. Campochiaro PA, Nguyen QD, Shah SM, Klein ML, Holz E, Frank RN, Saperstein DA, Gupta A, Stout JT, Macko J et al (2006) Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gene Ther 17:167–176

    PubMed  CAS  Google Scholar 

  52. Rasmussen H, Chu KW, Campochiaro P, Gehlbach PL, Haller JA, Handa JT, Nguyen QD, Sung JU (2001) Clinical protocol. An open-label, phase I, single administration, dose-escalation study of ADGVPEDF.11D (ADPEDF) in neovascular age-related macular degeneration (AMD). Hum Gene Ther 12:2029–2032

    PubMed  CAS  Google Scholar 

  53. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, Wilson JM, Batshaw ML (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80:148–158

    PubMed  CAS  Google Scholar 

  54. Wei L, Hamilton M, McVey D, King C, Brough D (2004) Repeat dosing of adenovector in the eye. ARVO 2004 Meeting Poster presentation. Available at: http://www.genvec.com/download/1hamilton_04_web.pdf.

  55. Wei L (2007) Clinical trial in age-related macular degeneration. American Society for Gene Therapy Annual Meeting 2007 Oral Presentation. Available at: http://www.genvec.com/download/2007%2020ASGT%2020Wei%2020Clin%2020Trial%2020in%2020AMD%2020with%2020AdPEDF%2020-%2020Final%2020Out.pdf.

  56. Haller J, Bandello F, Belfort RJ, Blumenkranz M, Gillies M, Heier J, Loewenstein A, Yoon Y, Jacques M, Jiao J et al (2010) Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology 117:1134–1146.e1

    PubMed  Google Scholar 

  57. Haller JA, Kuppermann BD, Blumenkranz MS, Williams GA, Weinberg DV, Chou C, Whitcup SM, DDPIS Group (2010) Randomized controlled trial of an intravitreous dexamethasone drug delivery system in patients with diabetic macular edema. Arch Ophthalmol 128:289–296

    PubMed  CAS  Google Scholar 

  58. Haller JA, Bandello F, Belfort RJ, Blumenkranz MS, Gillies M, Heier J, Loewenstein A, Yoon YH, Jacques ML, Jiao J et al (2010) Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Opthalmology 117:1134–1146.e1

    Google Scholar 

  59. Harris P, Boloor A, Cheung M, Kumar R, Crosby R, Davis-Ward R, Epperly A, Hinkle K, Rr H, Johnson J et al (2008) Discovery of 5-[[4-[(2, 3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J Med Chem 51:4632–4640

    PubMed  CAS  Google Scholar 

  60. Kumar R, Knick V, Rudolph S, Johnson J, Crosby R, Crouthamel M, Hopper T, Miller C, Harrington L, Onori J et al (2007) Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 6:2012–2021

    PubMed  CAS  Google Scholar 

  61. McLaughlin M (2010) Pazopanib eye drops for neovascular AMD. GTCbio 2nd Annual Ocular Diseases and Drug Discovery Conference (Keynote presentation abstract)

  62. Pazopanib ct ID# NCT00612456 and # NCT01154062. Available at: www.clinicaltrials.gov. Accessed 18 September 2010

  63. OT-551 fDA (2009) OTHERA announces positive interim phase 2 results of OT-551 eye drop treatment for dry AMD. Available at: http://www.medicalnewstoday.com/articles/145919.php. Accessed 4 October 2009

  64. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224

    PubMed  CAS  Google Scholar 

  65. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    PubMed  CAS  Google Scholar 

  66. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733

    PubMed  CAS  Google Scholar 

  67. Johnston DA, Dong B, Hughes CC (2009) TNF induction of jagged-1 in endothelial cells is NFkappaB-dependent. Gene 435:36–44

    PubMed  CAS  Google Scholar 

  68. Wong W, Kam W, Cunningham D, Harrington M, Hammel K, Meyerle C, Cukras C, Chew E, Sadda S, Ferris F (2010) Treatment of geographic atrophy by the topical administration of OT-551: results of a phase ii clinical trial. Invest Ophthalmol Vis Sci 51(12):6131–6139

    PubMed  Google Scholar 

  69. TG100801 (2010) ID # NCT00509548. Available at: www.clinicaltrials.gov

  70. Doukas J, Mahesh S, Umeda N, Kachi S, Akiyama H, Yokoi K, Cao J, Chen Z, Dellamary L, Tam B et al (2008) Topical administration of a multi-targeted kinase inhibitor suppresses choroidal neovascularization and retinal edema. J Cell Physiol 216:29–37

    PubMed  CAS  Google Scholar 

  71. Walter DK (2004) The use of pharmacokinetic and pharmacodynamic data in the assessment of drug safety in early drug development. Br J Clin Pharmacol 58:601–608

    Google Scholar 

  72. Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR, VISiONCT Group (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351:2805–2816

    PubMed  CAS  Google Scholar 

  73. Waisbourd M, Loewenstein A, Goldstein M, Leibovitch I (2007) Targeting vascular endothelial growth factor: a promising strategy for treating age-related macular degeneration. Drugs Aging 24:643–662

    PubMed  CAS  Google Scholar 

  74. Gamulescu M-A, Helbig H (2007) A new era in the treatment of age-related macular degeneration. Expert Opin Ther Patents 17:1351–1363

    CAS  Google Scholar 

  75. Roberts D (2008) New anti-PDGF aptamer now in trials. Available at: http://www.mdsupport.org/library/E10030.html Accessed 15 February 2010.

  76. Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, Menger MD, Ullrich A, Vajkoczy P (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18:338–340

    PubMed  CAS  Google Scholar 

  77. Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D’Amore PA (2003) Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol 264:275–288

    PubMed  CAS  Google Scholar 

  78. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    PubMed  CAS  Google Scholar 

  79. Otrock ZK, Makarem JA, Shamseddine AI (2007) Vascular endothelial growth factor family of ligands and receptors: review. Blood Cells Mol Dis 38:258–268

    PubMed  CAS  Google Scholar 

  80. Hellström M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780

    PubMed  Google Scholar 

  81. Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, Wiegand SJ (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A 104:3219–3224

    PubMed  CAS  Google Scholar 

  82. Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A, Eichmann A (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A 104:3225–3230

    PubMed  CAS  Google Scholar 

  83. Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M, Waltari M, Hellström M, Schomber T, Peltonen R et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656–660

    PubMed  CAS  Google Scholar 

  84. Cho M, Barbazetto I, Freund K (2009) Refractory neovascular age-related macular degeneration secondary to polypoidal choroidal vasculopathy. Am J Ophthalmol 148:70–78.e71

    PubMed  Google Scholar 

  85. Stangos A, Gandhi J, Nair-Sahni J, Heimann H, Pournaras C, Harding S (2010) Polypoidal choroidal vasculopathy masquerading as neovascular age-related macular degeneration refractory to ranibizumab. Am J Ophthalmol 150(5):666–673

    PubMed  CAS  Google Scholar 

  86. Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424

    PubMed  CAS  Google Scholar 

  87. Fagerness JA, Maller JB, Neale BM, Reynolds RC, Daly MJ, Seddon JM (2009) Variation near complement factor I is associated with risk of advanced AMD. Eur J Hum Genet 17:100–104

    PubMed  CAS  Google Scholar 

  88. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR et al (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38:458–462

    PubMed  CAS  Google Scholar 

  89. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, Hageman JL, Stockman HA, Borchardt JD, Gehrs KM et al (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102:7227–7232

    PubMed  CAS  Google Scholar 

  90. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, Clayton DG, Hayward C, Morgan J, Wright AF et al (2007) Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 357:553–561

    PubMed  CAS  Google Scholar 

  91. Johnson PT, Betts KE, Radeke MJ, Hageman GS, Anderson DH, Johnson LV (2006) Individuals homozygous for the age-related macular degeneration risk-conferring variant of complement factor H have elevated levels of CRP in the choroid. Proc Natl Acad Sci U S A 103:17456–17461

    PubMed  CAS  Google Scholar 

  92. Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, Chen Y, Zhang K, Ambati BK, Baffi JZ et al (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A 103:2328–2333

    PubMed  CAS  Google Scholar 

  93. Potentia Pharmaceuticals’ POT-4 Drug Candidate For Age-Related Macular Degeneration Successfully Completes Phase I Clinical Trial. May 5, 2009. http://www.medicalnewstoday.com/articles/148725.php Accessed 30/09/09

  94. Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 29:10–14

    PubMed  CAS  Google Scholar 

  95. Praidou A, Papakonstantinou E, Androudi S, Georgiadis N, Karakiulakis G, Dimitrakos S (2009) Vitreous and serum levels of vascular endothelial growth factor and platelet-derived growth factor and their correlation in patients with non-proliferative diabetic retinopathy and clinically significant macula oedema. Acta Ophthalmol (in press)

  96. Lu M, Adamis AP (2006) Molecular biology of choroidal neovascularization. Ophthalmol Clin North Am 19:323–334

    PubMed  Google Scholar 

  97. Mitamura Y, Harada C, Harada T (2005) Role of cytokines and trophic factors in the pathogenesis of diabetic retinopathy. Curr Diabetes Rev 1:73–81

    PubMed  CAS  Google Scholar 

  98. Shinohara K, Shinohara T, Mochizuki N, Mochizuki Y, Sawa H, Kohya T, Fujita M, Fujioka Y, Kitabatake A, Nagashima K (1996) Expression of vascular endothelial growth factor in human myocardial infarction. Heart Vessels 11:113–122

    PubMed  CAS  Google Scholar 

  99. Kilic U, Kilic E, Järve A, Guo Z, Spudich A, Bieber K, Barzena U, Bassetti CL, Marti HH, Hermann DM (2006) Human vascular endothelial growth factor protects axotomized retinal ganglion cells in vivo by activating ERK-1/2 and Akt pathways. J Neurosci 26:12439–12446

    PubMed  CAS  Google Scholar 

  100. Zachery I (2005) Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals 14:207–221

    Google Scholar 

  101. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Inves 102:783–791

    CAS  Google Scholar 

  102. Barber AJ (2003) A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry 27:283–290

    PubMed  CAS  Google Scholar 

  103. Zhang X, Bao S, Hambly BD, Gillies MC (2009) Vascular endothelial growth factor-A: a multifunctional molecular player in diabetic retinopathy. Int J Biochem Cell Biol 41:2368–2371

    PubMed  CAS  Google Scholar 

  104. Nowak JZ (2006) Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep 58:353–363

    PubMed  CAS  Google Scholar 

  105. Dunaief J, Dentchev T, Ying G, Milam A (2002) The role of apoptosis in age-related macular degeneration. Arch Ophthalmol 120:1435–1442

    PubMed  Google Scholar 

  106. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    PubMed  CAS  Google Scholar 

  107. Shen JK, Dong A, Hackett SF, Bell WR, Green WR, Campochiaro PA (2007) Oxidative damage in age-related macular degeneration. Histol Histopathol 22:1301–1308

    PubMed  CAS  Google Scholar 

  108. Szabo (2009) Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 156:714–727

    Google Scholar 

  109. Saint-Geniez M, Maldonado AE, D’Amore PA (2006) VEGF expression and receptor activation in the choroid during development and in the adult. Invest Ophthalmol Vis Sci 47:3135–3142

    PubMed  Google Scholar 

  110. Gibran S, Sachdev A, Stappler T, Newsome R, Wong D, Hiscott P (2007) Histological findings of a choroidal neovascular membrane removed at the time of macular translocation in a patient previously treated with intravitreal bevacizumab treatment (Avastin). Br J Ophthalmol 91:602–604

    PubMed  CAS  Google Scholar 

  111. Rosenfeld P, Shapiro H, Tuomi L, Webster M, Elledge J, Blodi B, Groups MaAS (2010) Characteristics of patients losing vision after 2 years of monthly dosing in the phase III ranibizumab clinical trials. Ophthalmology (in press)

  112. Miki A, Miki K, Ueno S, Wersinger D, Berlinicke C, Shaw G, Usui S, Wang Y, Zack D, Campochiaro P (2010) Prolonged blockade of VEGF receptors does not damage retinal photoreceptors or ganglion cells. J Cell Physiol 224:262–272

    PubMed  CAS  Google Scholar 

  113. Sakurai K, Akiyama H, Shimoda Y, Yoshida I, Kurabayashi M, Kishi S (2009) Effect of intravitreal injection of high-dose bevacizumab in monkey eyes. Invest Ophthalmol Vis Sci 50:4905–4916

    PubMed  Google Scholar 

  114. Thaler S, Fiedorowicz M, Choragiewicz T, Bolz S, Tura A, Henke-Fahle S, Yoeruek E, Zrenner E, Bartz-Schmidt K, Ziemssen F et al (2010) Toxicity testing of the VEGF inhibitors bevacizumab, ranibizumab and pegaptanib in rats both with and without prior retinal ganglion cell damage. Acta Ophthalmol 88:e170–e176

    PubMed  Google Scholar 

  115. Ueno S, Pease M, Wersinger D, Masuda T, Vinores S, Licht T, Zack D, Quigley H, Keshet E, Campochiaro P (2008) Prolonged blockade of VEGF family members does not cause identifiable damage to retinal neurons or vessels. J Cell Physiol 217:13–22

    PubMed  CAS  Google Scholar 

  116. Zayit-Soudry S, Zemel E, Loewenstein A, Perlman I (2010) Safety evaluation of repeated intravitreal injections of bevacizumab and ranibizumab in rabbit eyes. Retina 30:671–681

    PubMed  Google Scholar 

  117. Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJ, Yamasaki S, Itaya M, Pan Y et al (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452:591–597

    PubMed  CAS  Google Scholar 

  118. Macron D (2009) As it matures, RNAi field sees failures of key clinical candidates. June 11, 2009 Genome web RNAi News. Available at: http://www.genomeweb.com/rnai/it-matures-rnai-field-sees-failures-key-clinical-candidates. Accessed 12 October 2009

  119. Jiang G, Ke Y, Sun D, Wang Y, Kaplan H, Shao H (2009) Regulatory role of TLR ligands on the activation of autoreactive T cells by retinal astrocytes. Invest Ophthalmol Vis Sci 50:4769–4776

    PubMed  Google Scholar 

  120. Yang Z, Stratton C, Francis P, Kleinman M, Tan P, Gibbs D, Tong Z, Chen H, Constantine R, Yang X et al (2008) Toll-like receptor 3 and geographic atrophy in age-related macular degeneration. N Engl J Med 359:1456–1463

    PubMed  CAS  Google Scholar 

  121. Krupinski J, Issa R, Bujny T, Slevin M, Kumar P, Kumar S, Kaluza J (1997) A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans. Stroke 28:564–573

    PubMed  CAS  Google Scholar 

  122. Valenzuela CF, Kazlauskas A, Weiner JL (1997) Roles of platelet-derived growth factor in the developing and mature nervous systems. Brain Res Brain Res Rev 24:77–89

    PubMed  CAS  Google Scholar 

  123. Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, Marette A, Aiello LP, Kern TS, King GL (2009) Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 15:1298–1306

    PubMed  CAS  Google Scholar 

  124. Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    PubMed  CAS  Google Scholar 

  125. Dejneka NS, Kuroki AM, Fosnot J, Tang W, Tolentino MJ, Bennett J (2004) Systemic rapamycin inhibits retinal and choroidal neovascularization in mice. Mol Vis 10:964–972

    PubMed  CAS  Google Scholar 

  126. MacuSight (2009) Innovative therapeutics for the treatment of severe diseases and conditions of the eye: MacuSight. Ophthalmology Innovation Summit Presentation. Available at: http://www.ophthalmologysummit.com/presentations/Macusight.pdf.

  127. Perceiva cct ID# NCT00656643, # NCT00711490 and # NCT00766649. Available at: www.clinicaltrials.gov. Accessed 18 September 2010

  128. Perceiva tt ID# NCT00712491 and # NCT00766337. Available at: www.clinicaltrials.gov. Accessed 18 September 2010

  129. Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12:44–52

    PubMed  CAS  Google Scholar 

  130. Dhillon A, Kolch W (2002) Untying the regulation of the Raf-1 kinase. Arch Biochem Biophys 404:3–9

    PubMed  CAS  Google Scholar 

  131. Kowluru RA, Kowluru A, Chakrabarti S, Khan Z (2004) Potential contributory role of H-Ras, a small G-protein, in the development of retinopathy in diabetic rats. Diabetes 53:775–783

    PubMed  CAS  Google Scholar 

  132. Kim S, Bakre M, Yin H, Varner JA (2002) Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J Clin Inves 110:933–941

    CAS  Google Scholar 

  133. Kim S, Bell K, Mousa SA, Varner JA (2000) Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 156:1345–1362

    PubMed  CAS  Google Scholar 

  134. Lee BH, Ruoslahti E (2005) alpha5beta1 integrin stimulates Bcl-2 expression and cell survival through Akt, focal adhesion kinase, and Ca2+/calmodulin-dependent protein kinase IV. J cell Biochem 95:1214–1223

    PubMed  CAS  Google Scholar 

  135. Yi M, Ruoslahti E (2001) A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc Natl Acad Sci U S A 98:620–624

    PubMed  CAS  Google Scholar 

  136. Csaky K, Do DV (2009) Safety implications of vascular endothelial growth factor blockade for subjects receiving intravitreal anti-vascular endothelial growth factor therapies. Am J Ophthalmol 148:647–656

    PubMed  CAS  Google Scholar 

  137. Ghate D, Edelhauser HF (2006) Ocular drug delivery. Expert Opin Drug Deli 3:275–287

    CAS  Google Scholar 

  138. SO MT, Kakinoki M, Sawada T, Kawamura H, Ogasawara K, Ohji M (2010) Pharmacokinetics of bevacizumab and its effect on vascular endothelial growth factor after intravitreal injection of bevacizumab in macaque eyes. Invest Ophthalmol Vis Sci 51:1606–1608

    Google Scholar 

  139. Gibbons JJ, Abraham RT, Yu K (2009) Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol 36:S3–S17

    PubMed  CAS  Google Scholar 

  140. Houde V, Brûlé S, Festuccia W, Blanchard P, Bellmann K, Deshaies Y, Marette A (2010) Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59:1338–1348

    PubMed  CAS  Google Scholar 

  141. Ignoffo RJ (2004) Overview of bevacizumab: a new cancer therapeutic strategy targeting vascular endothelial growth factor. Am J Health Syst Pharm 61:s21–s26

    PubMed  CAS  Google Scholar 

  142. Takeda A, Baffi JZ, Kleinman ME, Cho WG, Nozaki M, Yamada K, Kaneko H, Albuquerque RJ, Dridi S, Saito K et al (2009) CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460:225–230

    PubMed  CAS  Google Scholar 

  143. Kusari J, Zhou SX, Padillo E, Clarke KG, Gil DW (2010) Inhibition of vitreoretinal VEGF elevation and blood–retinal barrier breakdown in streptozotocin-induced diabetic rats by brimonidine. Invest Ophthalmol Vis Sci 51:1044–1051

    PubMed  Google Scholar 

  144. Donello JE, Padillo EU, Webster ML, Wheeler LA, Gil DW (2001) Alpha(2)-adrenoceptor agonists inhibit vitreal glutamate and aspartate accumulation and preserve retinal function after transient ischemia. J Pharmacol Exp Ther 296:216–223

    PubMed  CAS  Google Scholar 

  145. Mayor-Torroglosa S, De la Villa P, Rodríguez ME, López-Herrera MP, Avilés-Trigueros M, García-Avilés A, de Imperial JM, Villegas-Pérez MP, Vidal-Sanz M (2005) Ischemia results 3 months later in altered ERG, degeneration of inner layers, and deafferented tectum: neuroprotection with brimonidine. Invest Ophthalmol Vis Sci 46:3825–3835

    PubMed  Google Scholar 

  146. Vidal-Sanz M, Lafuente MP, Mayor S, de Imperial JM, Villegas-Pérez MP (2001) Retinal ganglion cell death induced by retinal ischemia. neuroprotective effects of two alpha-2 agonists. Surv Ophthalmol 45:S261–S267

    PubMed  Google Scholar 

  147. Zhang G, Dass CR, Sumithran E, Di Girolamo N, Sun LQ, Khachigian LM (2004) Effect of deoxyribozymes targeting c-Jun on solid tumor growth and angiogenesis in rodents. J Natl Cancer Inst 96:683–696

    PubMed  CAS  Google Scholar 

  148. Zhang G, Fahmy RG, diGirolamo N, Khachigian LM (2006) JUN siRNA regulates matrix metalloproteinase-2 expression, microvascular endothelial growth and retinal neovascularisation. J Cell Sci 119:3219–3226

    PubMed  CAS  Google Scholar 

  149. Fahmy RG, Waldman A, Zhang G, Mitchell A, Tedla N, Cai H, Geczy CR, Chesterman CN, Perry M, Khachigian LM (2006) Suppression of vascular permeability and inflammation by targeting of the transcription factor c-jun. Nat Biotechnol 24:856–863

    Google Scholar 

  150. Luo X, Cai H, Ni J, Bhindi R, Lowe HC, Chesterman CN, Khachigian LM (2009) c-Jun DNAzymes inhibit myocardial inflammation, ROS generation, infarct size, and improve cardiac function after ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 29:1836–1842

    PubMed  CAS  Google Scholar 

  151. Zhang G, Luo X, Sumithran E, Pua VS, Barnetson RS, Halliday GM, Khachigian LM (2006) Squamous cell carcinoma growth in mice and in culture is regulated by c-Jun and its control of matrix metalloproteinase-2 and -9 expression. Oncogene 25:7260–7266

    PubMed  CAS  Google Scholar 

  152. Arevalo JF, Maia M, Flynn HWJ, Saravia M, Avery RL, Wu L, Eid Farah M, Pieramici DJ, Berrocal MH, Sanchez JG (2008) Tractional retinal detachment following intravitreal bevacizumab (Avastin) in patients with severe proliferative diabetic retinopathy. Br J Ophthalmol 92:213–216

    PubMed  CAS  Google Scholar 

  153. Honda S, Hirabayashi H, Tsukahara Y, Negi A (2008) Acute contraction of the proliferative membrane after an intravitreal injection of bevacizumab for advanced retinopathy of prematurity. Graedes Arch Clin Exp Ophthalmol 246:1061–1063

    CAS  Google Scholar 

  154. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Inves 118:3132–3142

    CAS  Google Scholar 

  155. Romano G, Marino IR, Pentimalli F, Adamo V, Giordano A (2009) Insertional mutagenesis and development of malignancies induced by integrating gene delivery systems: implications for the design of safer gene-based interventions in patients. Drug News Perspect 22:185–196

    PubMed  CAS  Google Scholar 

  156. Kay MA (2007) AAV vectors and tumorigenicity. Nat Biotechnol 25:1111–1113

    PubMed  CAS  Google Scholar 

  157. Nakai H, Wu X, Fuess S, Storm TA, Munroe D, Montini E, Burgess SM, Grompe M, Kay MA (2005) Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol 79:3606–3614

    PubMed  CAS  Google Scholar 

  158. Porteus MH, Connelly JP, Pruett SM (2006) A look to future directions in gene therapy research for monogenic diseases. PLOS Genet 2:e133

    PubMed  Google Scholar 

  159. Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, Mingozzi F, Bennicelli JL, Ying GS, Rossi S et al (2009) Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374:1597–1605

    PubMed  CAS  Google Scholar 

  160. Schulz M, Freisem-Rabien U, Jessberger R, Doerfler W (1987) Transcriptional activities of mammalian genomes at sites of recombination with foreign DNA. J Virol 61:344–353

    PubMed  CAS  Google Scholar 

  161. McCarty DM, Young SM Jr, Samulski RJ (2004) Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 38:819–845

    PubMed  CAS  Google Scholar 

  162. Tao W (2006) Application of encapsulated cell technology for retinal degenerative diseases. Expert Opin Biol Ther 6:717–726

    PubMed  CAS  Google Scholar 

  163. Tao W, Wen R, Goddard MB, Sherman SD, O'Rourke PJ, Stabila PF, Bell WJ, Dean BJ, Kauper KA, Budz VA et al (2002) Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest Ophthalmol Vis Sci 43:3292–3298

    PubMed  Google Scholar 

  164. Neurotech (2009) Results from neurotech’s NT-501 phase 2 retinitis pigmentosa studies demonstrate consistent biological effect on photoreceptors. Available at: http://www.neurotechusa.com/news_events/pr_2009-05-28.asp Accessed 30 January 2010

  165. Bush RA, Lei B, Tao W, Raz D, Chan C, Cox TA, Santos-Muffley M, Sieving PA (2004) Encapsulated cell-based intraocular delivery of ciliary neurotrophic factor in normal rabbit: dose-dependent effects on ERG and retinal histology. Invest Ophthalmol Vis Sci 45:2420–2430

    PubMed  Google Scholar 

  166. Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJ, Fullmer KR, Bush RA (2006) Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A 103:3896–3901

    PubMed  CAS  Google Scholar 

  167. Zeiss CJ, Allore HG, Towle V, Tao W (2006) CNTF induces dose-dependent alterations in retinal morphology in normal and rcd-1 canine retina. Exp Eye Res 82:395–404

    PubMed  CAS  Google Scholar 

  168. Penfold PL, Madigan MC, Gillies MC, Provis JM (2001) Immunological and aetiological aspects of macular degeneration. Prog Retin Eye Res 20:385–414

    PubMed  CAS  Google Scholar 

  169. Ting AY, Lee TK, MacDonald IM (2009) Genetics of age-related macular degeneration. Curr Opin Ophthalmol 20:369–376

    PubMed  Google Scholar 

  170. Positive Results from Neurotech’s NT-501 Phase 2 Dry AMD (Geographic Atrophy) Study Demonstrate Proof of Concept. Available at: http://www.neurotechusa.com/news_events/pr_2009-03-26.asp Accessed 30 January 2010

  171. NT-503. Available at: http://www.neurotechusa.com/ect/nt-503.asp. Accessed 20/23/10.

  172. Results from Neurotech’s NT-501 phase 2 retinitis pigmentosa studies demonstrate consistent biological effect on photoreceptors. Available at: http://www.medicalnewstoday.com/articles/151786.php. Accessed 22 December 2009

  173. Park K, Chen Y, Hu Y, Mayo AS, Kompella UB, Longeras R, Ma JX (2009) Nanoparticle-mediated expression of an angiogenic inhibitor ameliorates ischemia-induced retinal neovascularization and diabetes-induced retinal vascular leakage. Diabetes 58:1902–1913

    PubMed  CAS  Google Scholar 

  174. Cohen H, Levy RJ, Gao J, Fishbein I, Kousaev V, Sosnowski S, Slomkowski S, Golomb G (2000) Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther 7:1896–1905

    PubMed  CAS  Google Scholar 

  175. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V (2002) Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 16:1217–1226

    PubMed  CAS  Google Scholar 

  176. Ledwith BJ, Manam S, Troilo PJ, Barnum AB, Pauley CJ, Griffiths TG 2nd, Harper LB, Beare CM, Bagdon WJ, Nichols WW (2000) Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology 43:258–272

    PubMed  CAS  Google Scholar 

  177. Manam S, Ledwith BJ, Barnum AB, Troilo PJ, Pauley CJ, Harper LB, Griffiths TG 2nd, Niu Z, Denisova L, Follmer TT et al (2000) Plasmid DNA vaccines: tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirology 43:273–281

    PubMed  CAS  Google Scholar 

  178. Nichols WW, Ledwith BJ, Manam SV, Troilo PJ (1995) Potential DNA vaccine integration into host cell genome. Ann N Y Acad Sci 772:30–39

    PubMed  CAS  Google Scholar 

  179. Wang Z, Troilo PJ, Wang X, Griffiths TG, Pacchione SJ, Barnum AB, Harper LB, Pauley CJ, Niu Z, Denisova L et al (2004) Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther 11:711–721

    PubMed  CAS  Google Scholar 

  180. Davuluri G, Espina V, EFr P, Ross M, Deng J, Liotta LA, Glaser BM (2009) Activated VEGF receptor shed into the vitreous in eyes with wet AMD: a new class of biomarkers in the vitreous with potential for predicting the treatment timing and monitoring response. Arch Ophthalmol 127:613–621

    PubMed  CAS  Google Scholar 

  181. Saltz LB, Lenz HJ, Kindler HL, Hochster HS, Wadler S, Hoff PM, Kemeny NE, Hollywood EM, Gonen M, Quinones M et al (2007) Randomized phase II trial of cetuximab, bevacizumab, and irinotecan compared with cetuximab and bevacizumab alone in irinotecan-refractory colorectal cancer: the BOND-2 study. J Clin Oncol 25:4557–4561

    PubMed  CAS  Google Scholar 

  182. Shojaei F, Ferrara N (2007) Antiangiogenic therapy for cancer: an update. Cancer J 13:345–348

    PubMed  CAS  Google Scholar 

  183. Schaal S, Kaplan H, Tezel T (2008) Is there tachyphylaxis to intravitreal anti-vascular endothelial growth factor pharmacotherapy in age-related macular degeneration? Ophthalmology 115:2199–2205

    PubMed  Google Scholar 

  184. Forooghian F, Cukras C, Meyerle C, Chew E, Wong W (2009) Tachyphylaxis after intravitreal bevacizumab for exudative age-related macular degeneration. Retina 29:723–731

    PubMed  Google Scholar 

  185. Keane P, Liakopoulos S, Ongchin S, Heussen F, Msutta S, Chang K, Walsh A, Sadda S (2008) Quantitative subanalysis of optical coherence tomography after treatment with ranibizumab for neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 49:3115–3120

    PubMed  Google Scholar 

  186. Forooghian F, Chew E, Meyerle C, Cukras C, Wong W (2009) Investigation of the role of neutralizing antibodies against bevacizumab as mediators of tachyphylaxis. Acta Ophthalmol (in press)

  187. Tao Y, Jonas J (2010) Intravitreal bevacizumab combined with intravitreal triamcinolone for therapy-resistant exudative age-related macular degeneration. J Ocul Pharmacol Ther 26:207–212

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a funding from the NHMRC.

Conflicts of interest

TW reports receiving consulting and speaking fees and travel support from Allergan, Bayer, Novartis, Pfizer and Solvay. LK reports UNSW has IP interests surrounding Dz13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levon M. Khachigian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truong, A., Wong, T.Y. & Khachigian, L.M. Emerging therapeutic approaches in the management of retinal angiogenesis and edema. J Mol Med 89, 343–361 (2011). https://doi.org/10.1007/s00109-010-0709-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0709-z

Keywords

Navigation