Skip to main content

Advertisement

Log in

Transplant tolerance: models, concepts and facts

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Despite extensive research, our understanding of immunological tolerance to self-antigens is incomplete, and the goal of achieving tolerance to allogeneic transplanted tissue remains elusive. Currently, it is generally believed that the blockade of T cell co-stimulation offers considerable potential for achieving tolerance in the clinical setting. However, the recent finding that CD154-specific antibody may act through the depletion of activated T cells rather than co-stimulation blockade alone highlights the need for a re-evaluation of published data and the role of co-stimulation blockade in transplant tolerance. Activated T cells are programmed to die unless they receive sufficient survival signals in the form of inflammatory and lymphotropic cytokines produced by activated antigen-presenting cells or the T cells themselves. In conditions where the threshold for surviving activation is not reached, for example when a small number of responder T cells are activated in the absence of substantial injury or inflammation, the ensuing death of all activated T cells can result in deletional tolerance. Therefore, we propose that tolerance represents a failure of T cells to survive activation and develop into memory cells. This concept is likely to apply in the transplant setting, where the strength of the alloresponse depends on both the number/phenotype of the recipients’ alloreactive T cells and immunogenicity of the transplanted tissue. Hence, in some rodent donor–recipient strain combinations that instigate a weak alloresponse, many treatments that only modestly decrease the alloresponse can achieve tolerance. In contrast, clinical transplantation is characterised by a strong alloresponse and highly immunogenic allografts, and thus, most treatments fail to control allograft rejection, and tolerance is difficult to achieve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sprent J, Kishimoto H (2002) The thymus and negative selection. Immunol Rev 185:126–135

    Article  PubMed  CAS  Google Scholar 

  2. Sprent J, Surh CD (2003) Knowing one's self: central tolerance revisited. Nat Immunol 4:303–304

    Article  PubMed  CAS  Google Scholar 

  3. Kirk AD, Harlan DM, Armstrong NN, Davis TA, Dong Y, Gray GS, Hong X, Thomas D, Fechner JH Jr, Knechtle SJ (1997) CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci U S A 94:8789–8794

    Article  PubMed  CAS  Google Scholar 

  4. Kirk AD, Burkly LC, Batty DS, Baumgartner RE, Berning JD, Buchanan K, Fechner JH Jr, Germond RL, Kampen RL, Patterson NB, Swanson SJ, Tadaki DK, TenHoor CN, White L, Knechtle SJ, Harlan DM (1999) Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med 5:686–693

    Article  PubMed  CAS  Google Scholar 

  5. Dharnidharka VR, Schowengerdt K, Skoda-Smith S (2000) Failure of combined costimulatory blockade in animal transplant model. Nat Med 6:115

    Article  PubMed  CAS  Google Scholar 

  6. Sun J, Sheil AG, Wang C, Wang L, Rokahr K, Sharland A, Jung SE, Li L, McCaughan GW, Bishop GA (1996) Tolerance to rat liver allografts: IV. Acceptance depends on the quantity of donor tissue and on donor leukocytes. Transplantation 62:1725–1730

    Article  PubMed  CAS  Google Scholar 

  7. Qian S, Lu L, Fu F, Li Y, Li W, Starzl TE, Fung JJ, Thomson AW (1997) Apoptosis within spontaneously accepted mouse liver allografts: evidence for deletion of cytotoxic T cells and implications for tolerance induction. J Immunol 158:4654–4661

    PubMed  CAS  Google Scholar 

  8. Bickerstaff AA, Wang JJ, Pelletier RP, Orosz CG (2002) The graft helps to define the character of the alloimmune response. Transpl Immunol 9:137–141

    Article  PubMed  CAS  Google Scholar 

  9. Huang WH, Yan Y, De Boer B, Bishop GA, House AK (2003) A short course of cyclosporine immunosuppression inhibits rejection but not tolerance of rat liver allografts. Transplantation 75:368–374

    Article  PubMed  CAS  Google Scholar 

  10. Uhteg LC, Salomon DR, Rocher LL, Kupiec-Weglinski JW, Araujo JL, Rubin MF, Tilney NL, Carpenter CB (1985) Cyclosporine-induced transplantation unresponsiveness in rat cardiac allograft recipients: in vitro determination of helper and suppressor activity. J Immunol 135:1800–1805

    PubMed  CAS  Google Scholar 

  11. Lim SM, White DJ (1988) Long-term residence of a graft is an insufficient stimulus for the induction of tolerance. Investigating the role of cyclosporine in class I-disparate heart grafts in the rat. J Exp Med 168:807–810

    Article  PubMed  CAS  Google Scholar 

  12. Nisco SJ, Hissink RJ, Vriens PW, Hoyt EG, Reitz BA, Clayberger C (1995) In vivo studies of the maintenance of peripheral transplant tolerance after cyclosporine. Radiosensitive antigen-specific suppressor cells mediate lasting graft protection against primed effector cells. Transplantation 59:1444–1452

    PubMed  CAS  Google Scholar 

  13. Williams MA, Trambley J, Ha J, Adams AB, Durham MM, Rees P, Cowan SR, Pearson TC, Larsen CP (2000) Genetic characterization of strain differences in the ability to mediate CD40/CD28-independent rejection of skin allografts. J Immunol 165:6849–6857

    PubMed  CAS  Google Scholar 

  14. Mysliwietz J, Thierfelder S (1999) Analysis of peripheral immune tolerance uncovers a mouse strain-dependent in situ type of graft tolerance. Eur J Immunol 29:150–155

    Article  PubMed  CAS  Google Scholar 

  15. van Maurik A, Wood KJ, Jones ND (2002) Impact of both donor and recipient strains on cardiac allograft survival after blockade of the CD40–CD154 costimulatory pathway. Transplantation 74:740–743

    Article  PubMed  Google Scholar 

  16. Larsen CP, Elwood ET, Alexander DZ, Ritchie SC, Hendrix R, Tucker-Burden C, Cho HR, Aruffo A, Hollenbaugh D, Linsley PS, Winn KJ, Pearson TC (1996) Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381:434–438

    Article  PubMed  CAS  Google Scholar 

  17. Trambley J, Bingaman AW, Lin A, Elwood ET, Waitze SY, Ha J, Durham MM, Corbascio M, Cowan SR, Pearson TC, Larsen CP (1999) Asialo GM1(+) CD8(+) T cells play a critical role in costimulation blockade-resistant allograft rejection. J Clin Invest 104:1715–1722

    Article  PubMed  CAS  Google Scholar 

  18. Chalasani G, Li Q, Konieczny BT, Smith-Diggs L, Wrobel B, Dai Z, Perkins DL, Baddoura FK, Lakkis FG (2004) The allograft defines the type of rejection (acute versus chronic) in the face of an established effector immune response. J Immunol 172:7813–7820

    PubMed  CAS  Google Scholar 

  19. He C, Schenk S, Zhang Q, Valujskikh A, Bayer J, Fairchild RL, Heeger PS (2004) Effects of T cell frequency and graft size on transplant outcome in mice. J Immunol 172:240–247

    PubMed  CAS  Google Scholar 

  20. Leibson PJ (2004) The regulation of lymphocyte activation by inhibitory receptors. Curr Opin Immunol 16:328–336

    Article  PubMed  CAS  Google Scholar 

  21. Goodnow CC, Sprent J, de St Groth BF, Vinuesa CG (2005) Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435:590–597

    Article  PubMed  CAS  Google Scholar 

  22. Bretscher P, Cohn M (1970) A theory of self–nonself discrimination. Science 169:1042–1049

    Article  PubMed  CAS  Google Scholar 

  23. Langman RE, Cohn M (1993) Two signal models of lymphocyte activation? Immunol Today 14:235–237

    Article  PubMed  CAS  Google Scholar 

  24. Schwartz R (1984) Induction of tolerance to self in T lymphocytes. Nature 308:690–691

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305–334

    Article  PubMed  CAS  Google Scholar 

  26. Kroczek RA, Mages HW, Hutloff A (2004) Emerging paradigms of T-cell co-stimulation. Curr Opin Immunol 16:321–327

    Article  PubMed  CAS  Google Scholar 

  27. Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68

    Article  PubMed  CAS  Google Scholar 

  28. Monk NJ, Hargreaves RE, Marsh JE, Farrar CA, Sacks SH, Millrain M, Simpson E, Dyson J, Jurcevic S (2003) Fc-dependent depletion of activated T cells occurs through CD40L-specific antibody rather than costimulation blockade. Nat Med 9:1275–1280

    Article  PubMed  CAS  Google Scholar 

  29. Hargreaves RE, Monk NJ, Jurcevic S (2004) Selective depletion of activated T cells: the CD40L-specific antibody experience. Trends Mol Med 10:130–135

    Article  PubMed  CAS  Google Scholar 

  30. Waldmann H (2003) The new immunosuppression: just kill the T cell. Nat Med 9:1259–1260

    Article  PubMed  CAS  Google Scholar 

  31. Ferrant JL, Benjamin CD, Cutler AH, Kalled SL, Hsu YM, Garber EA, Hess DM, Shapiro RI, Kenyon NS, Harlan DM, Kirk AD, Burkly LC, Taylor FR (2004) The contribution of Fc effector mechanisms in the efficacy of anti-CD154 immunotherapy depends on the nature of the immune challenge. Int Immunol 16:1583–1594

    Article  PubMed  CAS  Google Scholar 

  32. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    PubMed  CAS  Google Scholar 

  33. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045

    PubMed  CAS  Google Scholar 

  34. Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23:445–449

    Article  PubMed  CAS  Google Scholar 

  35. Legge KL, Gregg RK, Maldonado-Lopez R, Li L, Caprio JC, Moser M, Zaghouani H (2002) On the role of dendritic cells in peripheral T cell tolerance and modulation of autoimmunity. J Exp Med 196:217–227

    Article  PubMed  CAS  Google Scholar 

  36. Morelli AE, Thomson AW (2003) Dendritic cells: regulators of alloimmunity and opportunities for tolerance induction. Immunol Rev 196:125–146

    Article  PubMed  CAS  Google Scholar 

  37. Limmer A, Ohl J, Kurts C, Ljunggren HG, Reiss Y, Groettrup M, Momburg F, Arnold B, Knolle PA (2000) Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 6:1348–1354

    Article  PubMed  CAS  Google Scholar 

  38. Adler AJ, Huang CT, Yochum GS, Marsh DW, Pardoll DM (2000) In vivo CD4+ T cell tolerance induction versus priming is independent of the rate and number of cell divisions. J Immunol 164:649–655

    PubMed  CAS  Google Scholar 

  39. Huang CT, Huso DL, Lu Z, Wang T, Zhou G, Kennedy EP, Drake CG, Morgan DJ, Sherman LA, Higgins AD, Pardoll DM, Adler AJ (2003) CD4+ T cells pass through an effector phase during the process of in vivo tolerance induction. J Immunol 170:3945–3953

    PubMed  CAS  Google Scholar 

  40. Adler AJ, Marsh DW, Yochum GS, Guzzo JL, Nigam A, Nelson WG, Pardoll DM (1998) CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. J Exp Med 187:1555–1564

    Article  PubMed  CAS  Google Scholar 

  41. Perez VL, Van Parijs L, Biuckians A, Zheng XX, Strom TB, Abbas AK (1997) Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6:411–417

    Article  PubMed  CAS  Google Scholar 

  42. Frauwirth KA, Alegre ML, Thompson CB (2001) CTLA-4 is not required for induction of CD8(+) T cell anergy in vivo. J Immunol 167:4936–4941

    PubMed  CAS  Google Scholar 

  43. Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458

    Article  PubMed  CAS  Google Scholar 

  44. Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    Article  PubMed  CAS  Google Scholar 

  45. Cobbold SP, Nolan KF, Graca L, Castejon R, Le Moine A, Frewin M, Humm S, Adams E, Thompson S, Zelenika D, Paterson A, Yates S, Fairchild PJ, Waldmann H (2003) Regulatory T cells and dendritic cells in transplantation tolerance: molecular markers and mechanisms. Immunol Rev 196:109–124

    Article  PubMed  CAS  Google Scholar 

  46. Jarvinen LZ, Blazar BR, Adeyi OA, Strom TB, Noelle RJ (2003) CD154 on the surface of CD4+CD25+ regulatory T cells contributes to skin transplant tolerance. Transplantation 76:1375–1379

    Article  PubMed  CAS  Google Scholar 

  47. Kronenberg M, Rudensky A (2005) Regulation of immunity by self-reactive T cells. Nature 435:598–604

    Article  PubMed  CAS  Google Scholar 

  48. Kurtz J, Shaffer J, Lie A, Anosova N, Benichou G, Sykes M (2004) Mechanisms of early peripheral CD4 T-cell tolerance induction by anti-CD154 monoclonal antibody and allogeneic bone marrow transplantation: evidence for anergy and deletion but not regulatory cells. Blood 103:4336–4343

    Article  PubMed  CAS  Google Scholar 

  49. Sakaguchi S, Hori S, Fukui Y, Sasazuki T, Sakaguchi N, Takahashi T (2003) Thymic generation and selection of CD25+CD4+ regulatory T cells: implications of their broad repertoire and high self-reactivity for the maintenance of immunological self-tolerance. Novartis Found Symp 252:6–16; discussion 16–23, 106–114

    Article  PubMed  CAS  Google Scholar 

  50. Khaled AR, Durum SK (2002) Lymphocide: cytokines and the control of lymphoid homeostasis. Nat Rev Immunol 2:817–830

    Article  PubMed  CAS  Google Scholar 

  51. Walker LS, Abbas AK (2002) The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2:11–19

    Article  PubMed  CAS  Google Scholar 

  52. Abbas AK (1996) Die and let live: eliminating dangerous lymphocytes. Cell 84:655–657

    Article  PubMed  CAS  Google Scholar 

  53. Dooms H, Abbas AK (2002) Life and death in effector T cells. Nat Immunol 3:797–798

    Article  PubMed  CAS  Google Scholar 

  54. Van Parijs L, Peterson DA, Abbas AK (1998) The Fas/Fas ligand pathway and Bcl-2 regulate T cell responses to model self and foreign antigens. Immunity 8:265–274

    Article  PubMed  Google Scholar 

  55. Miller JF, Heath WR, Allison J, Morahan G, Hoffmann M, Kurts C, Kosaka H (1997) T cell tolerance and autoimmunity. Ciba Found Symp 204:159–168; discussion 168–171

    PubMed  CAS  Google Scholar 

  56. Zinkernagel RM (2004) On ‘reactivity’ versus ‘tolerance’. Immunol Cell Biol 82:343–352

    Article  PubMed  Google Scholar 

  57. Ohashi PS, DeFranco AL (2002) Making and breaking tolerance. Curr Opin Immunol 14:744–759

    Article  PubMed  CAS  Google Scholar 

  58. Sallusto F, Lanzavecchia A (1999) Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. J Exp Med 189:611–614

    Article  PubMed  CAS  Google Scholar 

  59. Hugues S, Fetler L, Bonifaz L, Helft J, Amblard F, Amigorena S (2004) Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nat Immunol 5:1235–1242

    Article  PubMed  CAS  Google Scholar 

  60. Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H (2003) Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18:605–617

    Article  PubMed  CAS  Google Scholar 

  61. Kurts C, Sutherland RM, Davey G, Li M, Lew AM, Blanas E, Carbone FR, Miller JF, Heath WR (1999) CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose. Proc Natl Acad Sci U S A 96:12703–12707

    Article  PubMed  CAS  Google Scholar 

  62. Kleindienst P, Wiethe C, Lutz MB, Brocker T (2005) Simultaneous induction of CD4 T cell tolerance and CD8 T cell immunity by semimature dendritic cells. J Immunol 174:3941–3947

    PubMed  CAS  Google Scholar 

  63. Shakhar G, Lindquist RL, Skokos D, Dudziak D, Huang JH, Nussenzweig MC, Dustin ML (2005) Stable T cell–dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat Immunol 6:707–714

    Article  PubMed  CAS  Google Scholar 

  64. Ito T, Ueno T, Clarkson MR, Yuan X, Jurewicz MM, Yagita H, Azuma M, Sharpe AH, Auchincloss H Jr, Sayegh MH, Najafian N (2005) Analysis of the role of negative T cell costimulatory pathways in CD4 and CD8 T cell-mediated alloimmune responses in vivo. J Immunol 174:6648–6656

    PubMed  CAS  Google Scholar 

  65. Zinkernagel RM, Ehl S, Aichele P, Oehen S, Kundig T, Hengartner H (1997) Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol Rev 156:199–209

    Article  PubMed  CAS  Google Scholar 

  66. Zinkernagel RM, Hengartner H (2001) Regulation of the immune response by antigen. Science 293:251–253

    Article  PubMed  CAS  Google Scholar 

  67. Hancock WW (1999) Current trends in transplant immunology. Curr Opin Nephrol Hypertens 8:317–324

    Article  PubMed  CAS  Google Scholar 

  68. Bingaman AW, Ha J, Waitze SY, Durham MM, Cho HR, Tucker-Burden C, Hendrix R, Cowan SR, Pearson TC, Larsen CP (2000) Vigorous allograft rejection in the absence of danger. J Immunol 164:3065–3071

    PubMed  CAS  Google Scholar 

  69. Sho M, Yamada A, Najafian N, Salama AD, Harada H, Sandner SE, Sanchez-Fueyo A, Zheng XX, Strom TB, Sayegh MH (2002) Physiological mechanisms of regulating alloimmunity: cytokines, CTLA-4, CD25+ cells, and the alloreactive T cell clone size. J Immunol 169:3744–3751

    PubMed  CAS  Google Scholar 

  70. Kishimoto K, Sandner S, Imitola J, Sho M, Li Y, Langmuir PB, Rothstein DM, Strom TB, Turka LA, Sayegh MH (2002) Th1 cytokines, programmed cell death, and alloreactive T cell clone size in transplant tolerance. J Clin Invest 109:1471–1479

    Article  PubMed  CAS  Google Scholar 

  71. Adams AB, Williams MA, Jones TR, Shirasugi N, Durham MM, Kaech SM, Wherry EJ, Onami T, Lanier JG, Kokko KE, Pearson TC, Ahmed R, Larsen CP (2003) Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest 111:1887–1895

    Article  PubMed  CAS  Google Scholar 

  72. Valujskikh A, Pantenburg B, Heeger PS (2002) Primed allospecific T cells prevent the effects of costimulatory blockade on prolonged cardiac allograft survival in mice. Am J Transplant 2:501–509

    Article  PubMed  CAS  Google Scholar 

  73. Chen Y, Heeger PS, Valujskikh A (2004) In vivo helper functions of alloreactive memory CD4+ T cells remain intact despite donor-specific transfusion and anti-CD40 ligand therapy. J Immunol 172:5456–5466

    PubMed  CAS  Google Scholar 

  74. Lim SM, White DJ (1989) A requirement for continued graft presence in the maintenance of systemic tolerance induced by cyclosporin A (CyA) in rats. Transpl Int 2:13–15

    Article  PubMed  CAS  Google Scholar 

  75. Hamano K, Rawsthorne MA, Bushell AR, Morris PJ, Wood KJ (1996) Evidence that the continued presence of the organ graft and not peripheral donor microchimerism is essential for maintenance of tolerance to alloantigen in vivo in anti-CD4 treated recipients. Transplantation 62:856–860

    Article  PubMed  CAS  Google Scholar 

  76. Schwartz RH (2005) Natural regulatory T cells and self-tolerance. Nat Immunol 6:327–330

    Article  PubMed  CAS  Google Scholar 

  77. Waldmann H, Cobbold S (2004) Exploiting tolerance processes in transplantation. Science 305:209–212

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julian P. Dyson or Stipo Jurcevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monk, N.J., Hargreaves, R.E.G., Simpson, E. et al. Transplant tolerance: models, concepts and facts. J Mol Med 84, 295–304 (2006). https://doi.org/10.1007/s00109-005-0006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0006-4

Keywords

Navigation