Skip to main content
Log in

Diagnose und Therapie der Sepsis

S2-Leitlinien der Deutschen Sepsis-Gesellschaft e.V. (DSG) und der Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin (DIVI)

Diagnosis and Therapy of Sepsis

Guidelines of the German Sepsis Society Inc. and the German Interdisciplinary Society for Intensive and Emergency Medicine

  • Schwerpunkt: Intensivmedizin
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Nach neuesten Erhebungen des vom BMBF geförderten Kompetenznetzwerkes Sepsis (SepNet) erkranken in Deutschland pro Jahr 75.000 Einwohner (110 von 100.000) an einer schweren Sepsis bzw. einem septischen Schock und 79.000 (116 von 100.000) an einer Sepsis. Mit ca. 60.000 Todesfällen stellen septische Erkrankungen die dritthäufigste Todesursache nach dem akuten Myokardinfarkt dar. Die direkten anteiligen Kosten, die allein für die intensivmedizinische Behandlung von Patienten mit schwerer Sepsis anfallen, liegen bei ca. 1,77 Mrd. €. Etwa 30% des Budgets für Intensivmedizin werden damit in die Behandlung der Sepsis investiert. Im Kontrast hierzu existierten bisher jedoch keine deutschen Leitlinien zur Diagnose und Therapie der schweren Sepsis. Auf Initiative der Deutschen Sepsis-Gesellschaft wurden daher in Anlehnung an die internationalen Empfehlungen des International Sepsis Forum (ISF) und der Surviving Sepsis Campaign (SSC) Leitlinien erarbeitet, welche die Versorgungsstrukturen im deutschen Gesundheitssystem berücksichtigen. Folgende Leitlinienthemen wurden als vorrangig eingestuft: a) Diagnose, b) Prävention, c) kausale Therapie, d) supportive Therapie, e) adjunktive Therapie. Die Leitlinien sind nach einem sorgfältig geplanten und streng eingehaltenen Prozess nach den Vorgaben der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF) entstanden.

Abstract

A recent survey conducted by the publicly funded Competence Network Sepsis (SepNet) reveals that severe sepsis and/or septic shock occurs in 75,000 inhabitants (110 out of 100,000) and sepsis in 79,000 inhabitants (116 out of 100,000) in Germany annually. This illness is responsible for approximately 60,000 deaths and ranges as the third most frequent cause of death after acute myocardial infarction. Direct costs for the intensive care of patients with severe sepsis alone amount to approximately 1.77 billion euros, which means that about 30% of the budget in intensive care is used to treat severe sepsis. However, until now German guidelines for the diagnosis and therapy of severe sepsis did not exist. Therefore, the German Sepsis Society initiated the development of guidelines which are based on international recommendations by the International Sepsis Forum (ISF) and the Surviving Sepsis Campaign (SSC) and take into account the structure and organization of the German health care system. Priority was given to the following guideline topics: a) diagnosis, b) prevention, c) causative therapy, d) supportive therapy, e) adjunctive therapy. The guidelines development process was carefully planned and strictly adhered to the requirements of the Working Group of Scientific Medical Societies (AWMF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Yusuf S, Teo K, Woods K (1993) Intravenous magnesium in acute myocardial infarction. An effective, safe, simple, and inexpensive intervention. Circulation 87: 2043–2046

    PubMed  Google Scholar 

  2. ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group (1995) ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. Lancet 345: 669–685

    Article  PubMed  Google Scholar 

  3. Sackett DL (1989) Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest 95 (Suppl): 2S–4S

    PubMed  Google Scholar 

  4. Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348: 1546–1554

    Article  PubMed  Google Scholar 

  5. Bates DW, Cook EF, Goldman L, Lee TH (1990) Predicting bacteremia in hospitalized patients. A prospectively validated model. Ann Intern Med 113: 495–500

    Google Scholar 

  6. Bates DW, Sands K, Miller E et al. (1997) Predicting bacteremia in patients with sepsis syndrome. Academic Medical Center Consortium Sepsis Project Working Group. J Infect Dis 176: 1538–1551

    PubMed  Google Scholar 

  7. Crowe M, Ispahani P, Humphreys H, Kelley T, Winter R (1998) Bacteraemia in the adult intensive care unit of a teaching hospital in Nottingham, UK, 1985–1996. Eur J Clin Microbiol Infect Dis 17: 377–384

    PubMed  Google Scholar 

  8. Leibovici L, Greenshtain S, Cohen O, Mor F, Wysenbeek AJ (1991) Bacteremia in febrile patients. A clinical model for diagnosis. Arch Intern Med 151: 1801–1086

    Article  PubMed  Google Scholar 

  9. Alberti C, Brun-Buisson C, Burchardi H et al. (2002) Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 28: 108–121

    Article  PubMed  Google Scholar 

  10. Vincent JL, Bihari DJ, Suter PM et al. (1995) The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA 274: 639–644

    Article  PubMed  Google Scholar 

  11. ACCP/SCCM Consensus Conference Committee (1992) Definition for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20: 864–874

    PubMed  Google Scholar 

  12. Zeni F, Freeman B, Natanson C (1997) Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit Care Med 25: 1095–1100

    Article  PubMed  Google Scholar 

  13. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM (1996) CDC definitions for nosocomial infections. In: Olmsted RN (ed) PIC infection control and applied epidemiology: principles and practice. Mosby, St. Louis, pp A1–A20

  14. Harbarth S, Holeckova K, Froidevaux C et al. (2001) Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med 164: 396–402

    PubMed  Google Scholar 

  15. Müller B, Becker KL, Schächinger H et al. (2000) Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Crit Care Med 28: 977–983

    PubMed  Google Scholar 

  16. Brunkhorst FM, Wegscheider K, Forycki ZF, Brunkhorst R (2000) Procalcitonin for early diagnosis and differentiation of SIRS, sepsis, severe sepsis, and septic shock. Intensive Care Med 26 (Suppl): S148–S152

    Article  Google Scholar 

  17. Clech C, Ferriere F, Karoubi P et al. (2004) Diagnostic and prognostic value of procalcitonin in patients with septic shock. Crit Care Med 32: 1166–1169

    Article  PubMed  Google Scholar 

  18. Meisner M, Tschaikowsky K, Hutzler A, Schick C, Schuttler J (1998) Postoperative plasma concentrations of procalcitonin after different types of surgery. Intensive Care Med 24: 680–684

    Article  PubMed  Google Scholar 

  19. Gramm HJ, Hannemann L, Reinhart K, Lode H (1995) Sepsis: ein Begriff im Wandel. Möglichkeiten und Grenzen der Diagnose anhand klinischer Kriterien. Dtsch Med Wochenschr 120: 498–502

    PubMed  Google Scholar 

  20. Smith-Elekes S, Weinstein MP (1993) Blood cultures. Infect Dis Clin North Am 7: 221–234

    PubMed  Google Scholar 

  21. Reimer LG, Wilson ML, Weinstein MP (1997) Update on detection of bacteremia and fungemia. Clin Microbiol Rev 10: 444–465

    PubMed  Google Scholar 

  22. Shafazand S, Weinacker AB (2002) Blood cultures in the critical care unit: improving utilization and yield. Chest 122: 1727–1736

    Article  PubMed  Google Scholar 

  23. Darby JM, Linden P, Pasculle W, Saul M (1997) Utilization and diagnostic yield of blood cultures in a surgical intensive care unit. Crit Care Med 25: 989–994

    Article  PubMed  Google Scholar 

  24. Shahar E, Wohl-Gottesman BS, Shenkman L (1990) Contamination of blood cultures during venepuncture: fact or myth? Postgrad Med J 66: 1053–1058

    PubMed  Google Scholar 

  25. Souvenir D, Anderson DE, Palpant S et al. (1998) Blood cultures positive for coagulase-negative staphylococci: antisepsis, pseudobacteremia, and therapy of patients. J Clin Microbiol 36: 1923–1926

    Google Scholar 

  26. Martinez JA, DesJardin JA, Aronoff M, Supran S, Nasraway SA, Snydman DR (2002) Clinical utility of blood cultures drawn from central venous or arterial catheters in critically ill surgical patients. Crit Care Med 30: 7–13

    Article  PubMed  Google Scholar 

  27. Wilson ML (1996) General principles of specimen collection and transport. Clin Infect Dis 22: 766–777

    PubMed  Google Scholar 

  28. Spitalnic SJ, Woolard RH, Mermel LA (1995) The significance of changing needles when inoculating blood cultures: a meta-analysis. Clin Infect Dis 21: 1103–1106

    PubMed  Google Scholar 

  29. Weinstein MP, Towns ML, Quartey SM et al. (1997) The clinical significance of positive blood cultures in the 1990 s: a prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin Infect Dis 24: 584–602

    PubMed  Google Scholar 

  30. Washington JA (1975) Blood cultures: principles and techniques. Mayo Clin Proc 50: 91–98

    PubMed  Google Scholar 

  31. Li J, Plorde JJ, Carlson LG (1994) Effects of volume and periodicity on blood cultures. J Clin Microbiol 32: 2829–2831

    Google Scholar 

  32. Wunderink RG (2000) Clinical criteria in the diagnosis of ventilator-associated pneumonia. Chest 117 (Suppl): 191S–194S

    Article  PubMed  Google Scholar 

  33. Singh N, Rogers P, Atwood CW, Wagener MM, Yu VL (2000) Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med 162: 505–511

    PubMed  Google Scholar 

  34. Fartoukh M, Maitre B, Honore S, Cerf C, Zahar JR, Brun-Buisson C (2003) Diagnosing pneumonia during mechanical ventilation: the clinical pulmonary infection score revisited. Am J Respir Crit Care Med 168: 173–179

    Article  PubMed  Google Scholar 

  35. Michel F, Franceschini B, Berger P et al. (2005) Early antibiotic treatment for BAL-confirmed ventilator-associated pneumonia: a role for routine endotracheal aspirate cultures. Chest 127: 589–597

    Article  PubMed  Google Scholar 

  36. Luyt CE, Chastre J, Fagon JY (2004) Value of the clinical pulmonary infection score for the identification and management of ventilator-associated pneumonia. Intensive Care Med 30: 844–852

    Article  PubMed  Google Scholar 

  37. Torres A, El-Ebiary M (2000) Bronchoscopic BAL in the diagnosis of ventilator-associated pneumonia. Chest 117 (Suppl): 198S–202S

    Article  PubMed  Google Scholar 

  38. Cook D, Mandell L (2000) Endotracheal aspiration in the diagnosis of ventilator-associated pneumonia. Chest 117 (Suppl): 195S–197S

    Article  PubMed  Google Scholar 

  39. Mauch H, Wagner J (1999) MIQ — Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik. Heft 7: Infektionen der tiefen Atemwege, Teil 1. Urban & Fischer, München

    Google Scholar 

  40. Gerbeaux P, Ledoray V, Boussuges A, Molenat F, Jean P, Sainty JM (1998) Diagnosis of nosocomial pneumonia in mechanically ventilated patients: repeatability of the bronchoalveolar lavage. Am J Respir Crit Care Med 157: 76–80

    PubMed  Google Scholar 

  41. American Thoracic Society; Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171: 388–416

    Article  PubMed  Google Scholar 

  42. Llewelyn M, Cohen J (2001) Diagnosis of infection in sepsis. Intensive Care Med 27 (Suppl 1): S10–32

    Article  PubMed  Google Scholar 

  43. Carratala J, Gudiol F, Pallares R et al. (1994) Risk factors for nosocomial Legionella pneumophila pneumonia. Am J Respir Crit Care Med 149: 625–629

    PubMed  Google Scholar 

  44. Dobbins BM, Kite P, Wilcox MH (1999) Diagnosis of central venous catheter related sepsis — a critical look inside. J Clin Pathol 52: 165–172

    PubMed  Google Scholar 

  45. Sherertz RJ (1996) Surveillance for infections associated with vascular catheters. Infect Control Hosp Epidemiol 17: 746–752

    PubMed  Google Scholar 

  46. Blot F, Nitenberg G, Chachaty E et al. (1999) Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet 354: 1071–1017

    Article  PubMed  Google Scholar 

  47. Tanguy M, Seguin P, Laviolle B, Desbordes L, Malledant Y (2005) Hub qualitative blood culture is useful for diagnosis of catheter-related infections in critically ill patients. Intensive Care Med 31: 645–648

    Article  PubMed  Google Scholar 

  48. Catton JA, Dobbins BM, Kite P et al. (2005) In situ diagnosis of intravascular catheter-related bloodstream infection: a comparison of quantitative culture, differential time to positivity, and endoluminal brushing. Crit Care Med 33: 787–791

    Article  PubMed  Google Scholar 

  49. Raad, II, Baba M, Bodey GP (1995) Diagnosis of catheter-related infections: the role of surveillance and targeted quantitative skin cultures. Clin Infect Dis 20: 593–597

    PubMed  Google Scholar 

  50. Cobb DK, High KP, Sawyer RG et al. (1992) A controlled trial of scheduled replacement of central venous and pulmonary-artery catheters. N Engl J Med 327: 1062–1068

    PubMed  Google Scholar 

  51. Cook D, Randolph A, Kernerman P et al. (1997) Central venous catheter replacement strategies: a systematic review of the literature. Crit Care Med 25: 1417–1424

    Article  PubMed  Google Scholar 

  52. Eyer S, Brummitt C, Crossley K, Siegel R, Cerra F (1990) Catheter-related sepsis: prospective, randomized study of three methods of long-term catheter maintenance. Crit Care Med 18: 1073–1079

    Google Scholar 

  53. Brook I, Frazier EH (1998) Aerobic and anaerobic microbiology of retroperitoneal abscesses. Clin Infect Dis 26: 938–941

    PubMed  Google Scholar 

  54. Nichols RL, Smith JW (1993) Wound and intraabdominal infections: microbiological considerations and approaches to treatment. Clin Infect Dis 16 (Suppl): S266–272

    PubMed  Google Scholar 

  55. Brook I, Frazier EH (1999) Microbiology of subphrenic abscesses: a 14-year experience. Am Surg 65: 1049–1053

    PubMed  Google Scholar 

  56. Marshall JC, Innes M (2003) Intensive care unit management of intra-abdominal infection. Crit Care Med 31: 2228–2237

    Article  PubMed  Google Scholar 

  57. Büchner T, Fegeler W, Bernhardt H et al. (2002) Treatment of severe Candida infections in high-risk patients in Germany: consensus formed by a panel of interdisciplinary investigators. Eur J Clin Microbiol Infect Dis 21: 337–352

    Article  PubMed  Google Scholar 

  58. Blumberg HM, Jarvis WR, Soucie JM et al. (2001) Risk factors for candidal bloodstream infections in surgical intensive care unit patients: the NEMIS prospective multicenter study. The National Epidemiology of Mycosis Survey. Clin Infect Dis 33: 177–186

    Article  PubMed  Google Scholar 

  59. Petri MG, Konig J, Moecke HP et al. (1997) Epidemiology of invasive mycosis in ICU patients: a prospective multicenter study in 435 non-neutropenic patients. Paul-Ehrlich Society for Chemotherapy, Divisions of Mycology and Pneumonia Research. Intensive Care Med 23: 317–325

    Article  PubMed  Google Scholar 

  60. Pappas PG, Rex JH, Sobel JD et al. (2004) Guidelines for treatment of candidiasis. Clin Infect Dis 38: 161–189

    Article  PubMed  Google Scholar 

  61. Richards M, Thursky K, Buising K (2003) Epidemiology, prevalence, and sites of infections in intensive care units. Semin Respir Crit Care Med 24: 3–22

    Article  PubMed  Google Scholar 

  62. Brooks K, Whitten S, Quigley D (1998) Reducing the incidence of ventilator-related pneumonia. J Health Qual 20: 14–19

    Google Scholar 

  63. Kaye J, Ashline V, Erickson D et al. (2000) Critical care bug team: a multidisciplinary team approach to reducing ventilator-associated pneumonia. Am J Infect Control 28: 197–201

    Article  PubMed  Google Scholar 

  64. Kelleghan SI, Salemi C, Padilla S et al. (1993) An effective continuous quality improvement approach to the prevention of ventilator-associated pneumonia. Am J Infect Control 21: 322–330

    Article  PubMed  Google Scholar 

  65. Joiner GA, Salisbury D, Bollin GE (1996) Utilizing quality assurance as a tool for reducing the risk of nosocomial ventilator-associated pneumonia. Am J Med Qual 11: 100–103

    PubMed  Google Scholar 

  66. Nicotra D, Ulrich C (1996) Process improvement plan for the reduction of nosocomial pneumonia in patients on ventilators. J Nurs Care Qual 10: 18–23

    Google Scholar 

  67. Zack JE, Garrison T, Trovillion E et al. (2002) Effect of an education program aimed at reducing the occurrence of ventilator-associated pneumonia. Crit Care Med 30: 2407–2412

    Article  PubMed  Google Scholar 

  68. Salahuddin N, Zafar A, Sukhyani L et al. (2004) Reducing ventilator-associated pneumonia rates through a staff education programme. J Hosp Infect 57: 223–227

    Article  PubMed  Google Scholar 

  69. Brook AD, Ahrens TS, Schaiff R et al. (1999) Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Crit Care Med 27: 2609–2615

    Article  PubMed  Google Scholar 

  70. Kollef MH, Shapiro SD, Silver P et al. (1997) A randomized, controlled trial of protocol-directed versus physician-directed weaning from mechanical ventilation. Crit Care Med 25: 567–574

    Article  PubMed  Google Scholar 

  71. Perren A, Domenighetti G, Mauri S, Genini F, Vizzardi N (2002) Protocol-directed weaning from mechanical ventilation: clinical outcome in patients randomized for a 30-min or 120-min trial with pressure support ventilation. Intensive Care Med 28: 1058–1063

    Article  PubMed  Google Scholar 

  72. Haley RW, Culver DH, White JW et al. (1985) The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. Am J Epidemiol 121: 182–205

    PubMed  Google Scholar 

  73. Haley RW, Morgan WM, Culver DH et al. (1985) Update from the SENIC project. Hospital infection control: recent progress and opportunities under prospective payment. Am J Infect Control 13: 97–108

    Article  PubMed  Google Scholar 

  74. Horan TC, White JW, Jarvis RW et al. (1986) Nosocomial infection surveillance, 1984. MMWR CDC Surveill Summ 35: 17–29

    Google Scholar 

  75. CDC (2003) NNIS criteria for determining nosocomial pneumonia. U.S. Department of Health and Human Services, CDC, Atlanta, GA

  76. Schulze MC, Gastmeier P, Geffers C, Rüden H (2000). Handbuch für die Surveillance von nosokomialen Infektionen nach den Methoden des Krankenhaus-Infektions-Surveillance-Systems KISS. Nomos, Baden-Baden

  77. Gaynes RP, Solomon S (1996) Improving hospital-acquired infection rates: the CDC experience. Jt Comm J Qual Improv 22: 457–467

    PubMed  Google Scholar 

  78. Josephson A, Karanfil L, Alonso H, Watson A, Blight J (1991) Risk-specific nosocomial infection rates. Am J Med 91: 131S–137S

    Article  Google Scholar 

  79. Drakulovic MB, Torres A, Bauer TT, Nicolas JM, Nogue S, Ferrer M (1999) Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet 354: 1851–1858

    Article  PubMed  Google Scholar 

  80. Orozco-Levi M, Torres A, Ferrer M et al. (1995) Semirecumbent position protects from pulmonary aspiration but not completely from gastroesophageal reflux in mechanically ventilated patients. Am J Respir Crit Care Med 152: 1387–1390

    PubMed  Google Scholar 

  81. Torres A, Serra-Batlles J, Ros E et al. (1992) Pulmonary aspiration of gastric contents in patients receiving mechanical ventilation: the effect of body position. Ann Intern Med 116: 540–543

    PubMed  Google Scholar 

  82. Lewis SJ, Egger M, Sylvester PA, Thomas S (2001) Early enteral feeding versus „nil by mouth“ after gastrointestinal surgery: systematic review and meta-analysis of controlled trials. BMJ 323: 773–776

    Article  PubMed  Google Scholar 

  83. Heyland DK, Novak F, Drover JW, Jain M, Su X, Suchner U (2001) Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 286: 944–953

    Article  PubMed  Google Scholar 

  84. Heys SD, Walker LG, Smith I, Eremin O (1999) Enteral nutritional supplementation with key nutrients in patients with critical illness and cancer: a meta-analysis of randomized controlled clinical trials. Ann Surg 229: 467–477

    Article  PubMed  Google Scholar 

  85. van den Berghe G, Wouters P, Weekers F et al. (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345: 1359–1367

    Article  PubMed  Google Scholar 

  86. Krinsley JS (2004) Effect of an intensive glucose management protocol on the mortality of critically ill adult patients. Mayo Clin Proc 79: 992–1000

    PubMed  Google Scholar 

  87. Abele-Horn M, Dauber A, Bauernfeind A et al. (1997) Decrease in nosocomial pneumonia in ventilated patients by selective oropharyngeal decontamination (SOD). Intensive Care Med 23: 187–195

    Article  PubMed  Google Scholar 

  88. D’Amico R, Pifferi S, Leonetti C, Torri V, Tinazzi A, Liberati A (1998) Effectiveness of antibiotic prophylaxis in critically ill adult patients: systematic review of randomised controlled trials. BMJ 316: 1275–1285

    PubMed  Google Scholar 

  89. Langlois-Karaga A, Bues-Charbit M, Davignon A et al. (1995) Selective digestive decontamination in multiple trauma patients: cost and efficacy. Pharm World Sci 17: 12–16

    Article  PubMed  Google Scholar 

  90. Nathens AB, Marshall JC (1999) Selective decontamination of the digestive tract in surgical patients: a systematic review of the evidence. Arch Surg 134: 170–176

    Article  PubMed  Google Scholar 

  91. Quinio B, Albanese J, Bues-Charbit M, Viviand X, Martin C (1996) Selective decontamination of the digestive tract in multiple trauma patients. A prospective double-blind, randomized, placebo-controlled study. Chest 109: 765–772

    PubMed  Google Scholar 

  92. Stoutenbeek CP, van Saene HK, Miranda DR, Zandstra DF (1984) The effect of selective decontamination of the digestive tract on colonisation and infection rate in multiple trauma patients. Intensive Care Med 10: 185–192

    Article  PubMed  Google Scholar 

  93. Unertl K, Ruckdeschel G, Selbmann HK et al. (1987) Prevention of colonization and respiratory infections in long-term ventilated patients by local antimicrobial prophylaxis. Intensive Care Med 13: 106–113

    Article  PubMed  Google Scholar 

  94. Kerver AJ, Rommes JH, Mevissen-Verhage EA et al. (1988) Prevention of colonization and infection in critically ill patients: a prospective randomized study. Crit Care Med 16: 1087–1093

    PubMed  Google Scholar 

  95. Ledingham IM, Alcock SR, Eastaway AT, McDonald JC, McKay IC, Ramsay G (1988) Triple regimen of selective decontamination of the digestive tract, systemic cefotaxime, and microbiological surveillance for prevention of acquired infection in intensive care. Lancet 1: 785–790

    Article  PubMed  Google Scholar 

  96. Brun-Buisson C, Legrand P, Rauss A et al. (1989) Intestinal decontamination for control of nosocomial multiresistant gram-negative bacilli. Study of an outbreak in an intensive care unit. Ann Intern Med 110: 873–881

    PubMed  Google Scholar 

  97. Ulrich C, Harinck-de Weerd JE, Bakker NC, Jacz K, Doornbos L, de Ridder VA (1989) Selective decontamination of the digestive tract with norfloxacin in the prevention of ICU-acquired infections: a prospective randomized study. Intensive Care Med 15: 424–431

    Article  PubMed  Google Scholar 

  98. Godard J, Guillaume C, Reverdy ME et al. (1990) Intestinal decontamination in a polyvalent ICU. A double-blind study. Intensive Care Med 16: 307–311

    Article  PubMed  Google Scholar 

  99. McClelland P, Murray AE, Williams PS et al. (1990) Reducing sepsis in severe combined acute renal and respiratory failure by selective decontamination of the digestive tract. Crit Care Med 18: 935–939

    Google Scholar 

  100. Rodriguez-Roldan JM, Altuna-Cuesta A, Lopez A et al. (1990) Prevention of nosocomial lung infection in ventilated patients: use of an antimicrobial pharyngeal nonabsorbable paste. Crit Care Med 18: 1239–1242

    Google Scholar 

  101. Tetteroo GW, Wagenvoort JH, Castelein A, Tilanus HW, Ince C, Bruining HA (1990) Selective decontamination to reduce gram-negative colonisation and infections after oesophageal resection. Lancet 335: 704–707

    Google Scholar 

  102. Aerdts SJ, van Dalen R, Clasener HA, Festen J, van Lier HJ, Vollaard EJ (1991) Antibiotic prophylaxis of respiratory tract infection in mechanically ventilated patients. A prospective, blinded, randomized trial of the effect of a novel regimen. Chest 100: 783–791

    PubMed  Google Scholar 

  103. Blair P, Rowlands BJ, Lowry K, Webb H, Armstrong P, Smilie J (1991) Selective decontamination of the digestive tract: a stratified, randomized, prospective study in a mixed intensive care unit. Surgery 110: 303–309

    PubMed  Google Scholar 

  104. Fox MA, Peterson S, Fabri BM, van Saene HK (1991) Selective decontamination of the digestive tract in cardiac surgical patients. Crit Care Med 19: 1486–1490

    PubMed  Google Scholar 

  105. Hartenauer U, Thulig B, Diemer W et al. (1991) Effect of selective flora suppression on colonization, infection, and mortality in critically ill patients: a one-year, prospective consecutive study. Crit Care Med 19: 463–473

    PubMed  Google Scholar 

  106. Pugin J, Auckenthaler R, Lew DP, Suter PM (1991) Oropharyngeal decontamination decreases incidence of ventilator-associated pneumonia. A randomized, placebo-controlled, double-blind clinical trial. JAMA 265: 2704–2710

    Article  PubMed  Google Scholar 

  107. Vandenbroucke-Grauls CM, Vandenbroucke JP (1991) Effect of selective decontamination of the digestive tract on respiratory tract infections and mortality in the intensive care unit. Lancet 338: 859–862

    Article  PubMed  Google Scholar 

  108. Cockerill FR, 3rd, Muller SR, Anhalt JP et al. (1992) Prevention of infection in critically ill patients by selective decontamination of the digestive tract. Ann Intern Med 117: 545–553

    PubMed  Google Scholar 

  109. Gastinne H, Wolff M, Delatour F, Faurisson F, Chevret S (1992) A controlled trial in intensive care units of selective decontamination of the digestive tract with nonabsorbable antibiotics. The French Study Group on Selective Decontamination of the Digestive Tract. N Engl J Med 326: 594–599

    PubMed  Google Scholar 

  110. Hammond JM, Potgieter PD, Saunders GL, Forder AA (1992) Double-blind study of selective decontamination of the digestive tract in intensive care. Lancet 340: 5–9

    Article  PubMed  Google Scholar 

  111. Rocha LA, Martin MJ, Pita S et al. (1992) Prevention of nosocomial infection in critically ill patients by selective decontamination of the digestive tract. A randomized, double blind, placebo-controlled study. Intensive Care Med 18: 398–404

    Article  PubMed  Google Scholar 

  112. Winter R, Humphreys H, Pick A, MacGowan AP, Willatts SM, Speller DC (1992) A controlled trial of selective decontamination of the digestive tract in intensive care and its effect on nosocomial infection. J Antimicrob Chemother 30: 73–87

    PubMed  Google Scholar 

  113. Korinek AM, Laisne MJ, Nicolas MH, Raskine L, Deroin V, Sanson-Lepors MJ (1993) Selective decontamination of the digestive tract in neurosurgical intensive care unit patients: a double-blind, randomized, placebo-controlled study. Crit Care Med 21: 1466–1473

    PubMed  Google Scholar 

  114. Selective Decontamination of the Digestive Tract Trialists‘ Collaborative Group (1993) Meta-analysis of randomised controlled trials of selective decontamination of the digestive tract. BMJ 307: 525–532

    PubMed  Google Scholar 

  115. Ferrer M, Torres A, Gonzalez J et al. (1994) Utility of selective digestive decontamination in mechanically ventilated patients. Ann Intern Med 120: 389–395

    PubMed  Google Scholar 

  116. Nau R, Ruchel R, Mergerian H, Wegener U, Winkelmann T, Prange HW (1990) Emergence of antibiotic-resistant bacteria during selective decontamination of the digestive tract. J Antimicrob Chemother 25: 881–883

    PubMed  Google Scholar 

  117. Sanchez Garcia M, Cambronero Galache JA, Lopez Diaz J et al. (1998) Effectiveness and cost of selective decontamination of the digestive tract in critically ill intubated patients. A randomized, double-blind, placebo-controlled, multicenter trial. Am J Respir Crit Care Med 158: 908–916

    PubMed  Google Scholar 

  118. Krueger WA, Lenhart FP, Neeser G et al. (2002) Influence of combined intravenous and topical antibiotic prophylaxis on the incidence of infections, organ dysfunctions, and mortality in critically ill surgical patients: a prospective, stratified, randomized, double-blind, placebo-controlled clinical trial. Am J Respir Crit Care Med 166: 1029–1037

    Article  PubMed  Google Scholar 

  119. de Jonge E, Schultz MJ, Spanjaard L et al. (2003) Effects of selective decontamination of digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomised controlled trial. Lancet 362: 1011–1016

    Article  PubMed  Google Scholar 

  120. Piarroux R, Grenouillet F, Balvay P et al. (2004) Assessment of preemptive treatment to prevent severe candidiasis in critically ill surgical patients. Crit Care Med 32: 2443–2449

    Article  PubMed  Google Scholar 

  121. Buchler MW, Baer HU, Brugger LE, Feodorovici MA, Uhl W, Seiler C (1997) Chirurgische Therapie der diffusen Peritonitis: Herdsanierung und intraoperative extensive Lavage. Chirurg 68: 811–815

    Article  PubMed  Google Scholar 

  122. Kaiser RE, Cerra FB (1981) Progressive necrotizing surgical infections — a unified approach. J Trauma 21: 349–355

    PubMed  Google Scholar 

  123. Freid MA, Vosti KL (1968) The importance of underlying disease in patients with gram-negative bacteremia. Arch Intern Med 121: 418–423

    Article  PubMed  Google Scholar 

  124. McCabe WR, Jackson GG (1962) Gram negative bacteremia. Arch Intern Med 110: 92–100

    Google Scholar 

  125. Bryant RE, Hood AF, Hood CE, Koenig MG (1971) Factors affecting mortality of gram-negative rod bacteremia. Arch Intern Med 127: 120–128

    Article  PubMed  Google Scholar 

  126. Young LS, Martin WJ, Meyer RD, Weinstein RJ, Anderson ET (1977) Gram-negative rod bacteremia: microbiologic, immunologic, and therapeutic considerations. Ann Intern Med 86: 456–471

    PubMed  Google Scholar 

  127. Kreger BE, Craven DE, McCabe WR (1980) Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med 68: 344–355

    Article  PubMed  Google Scholar 

  128. Leibovici L, Paul M, Poznanski O et al. (1997) Monotherapy versus beta-lactam-aminoglycoside combination treatment for gram-negative bacteremia: a prospective, observational study. Antimicrob Agents Chemother 41: 1127–1133

    PubMed  Google Scholar 

  129. Chow JW, Fine MJ, Shlaes DM et al. (1991) Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med 115: 585–590

    PubMed  Google Scholar 

  130. Vidal F, Mensa J, Almela M et al. (1996) Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Analysis of 189 episodes. Arch Intern Med 156: 2121–2126

    Article  PubMed  Google Scholar 

  131. Schiappa DA, Hayden MK, Matushek MG et al. (1996) Ceftazidime-resistant Klebsiella pneumoniae and Escherichia coli bloodstream infection: a case-control and molecular epidemiologic investigation. J Infect Dis 174: 529–536

    PubMed  Google Scholar 

  132. Caballero-Granado FJ, Cisneros JM, Luque R et al. (1998) Comparative study of bacteremias caused by Enterococcus spp. with and without high-level resistance to gentamicin. The Grupo Andaluz para el estudio de las Enfermedades Infecciosas. J Clin Microbiol 36: 520–525

    Google Scholar 

  133. Ispahani P, Pearson NJ, Greenwood D (1987) An analysis of community and hospital-acquired bacteraemia in a large teaching hospital in the United Kingdom. Q J Med 63: 427–440

    PubMed  Google Scholar 

  134. Leibovici L, Drucker M, Konigsberger H et al. (1997) Septic shock in bacteremic patients: risk factors, features and prognosis. Scand J Infect Dis 29: 71–75

    PubMed  Google Scholar 

  135. Leibovici L, Shraga I, Drucker M, Konigsberger H, Samra Z, Pitlik SD (1998) The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med 244: 379–386

    Article  PubMed  Google Scholar 

  136. Kollef MH, Sherman G, Ward S, Fraser VJ (1999) Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 115: 462–474

    Article  PubMed  Google Scholar 

  137. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118: 146–155

    Article  PubMed  Google Scholar 

  138. Harbarth S, Ferriere K, Hugonnet S, Ricou B, Suter P, Pittet D (2002) Epidemiology and prognostic determinants of bloodstream infections in surgical intensive care. Arch Surg 137: 1353–1359

    Article  PubMed  Google Scholar 

  139. Hanon FX, Monnet DL, Sorensen TL, Molbak K, Pedersen G, Schonheyder H (2002) Survival of patients with bacteraemia in relation to initial empirical antimicrobial treatment. Scand J Infect Dis 34: 520–528

    Article  PubMed  Google Scholar 

  140. Harbarth S, Garbino J, Pugin J, Romand JA, Lew D, Pittet D (2003) Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 115: 529–535

    Article  PubMed  Google Scholar 

  141. Zaragoza R, Artero A, Camarena JJ, Sancho S, Gonzalez R, Nogueira JM (2003) The influence of inadequate empirical antimicrobial treatment on patients with bloodstream infections in an intensive care unit. Clin Microbiol Infect 9: 412–418

    Article  PubMed  Google Scholar 

  142. Leone M, Bourgoin A, Cambon S, Dubuc M, Albanese J, Martin C (2003) Empirical antimicrobial therapy of septic shock patients: adequacy and impact on the outcome. Crit Care Med 31: 462–467

    Article  PubMed  Google Scholar 

  143. Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C (2003) Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med 31: 2742–2751

    Article  PubMed  Google Scholar 

  144. Dellinger RP, Carlet J, Masur H et al. (2004) Surviving sepsis campaign for management of severe sepsis and septic shock. Crit Care Med 32: 858–872

    Article  PubMed  Google Scholar 

  145. Paul M, Benuri-Silbiger I, Soares-Weiser K, Leibovici L (2004) Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ 328: 668

    Article  PubMed  Google Scholar 

  146. Byl B, Jacobs F, Wallemacq P et al. (2003) Vancomycin penetration of uninfected pleural fluid exudate after continuous or intermittent infusion. Antimicrob Agents Chemother 47: 2015–2017

    Article  PubMed  Google Scholar 

  147. Cruciani M, Gatti G, Lazzarini L et al. (1996) Penetration of vancomycin into human lung tissue. J Antimicrob Chemother 38: 865–869

    PubMed  Google Scholar 

  148. Kollef MH, Rello J, Cammarata SK, Croos-Dabrera RV, Wunderink RG (2004) Clinical cure and survival in Gram-positive ventilator-associated pneumonia: retrospective analysis of two double-blind studies comparing linezolid with vancomycin. Intensive Care Med 30: 388–394

    Article  PubMed  Google Scholar 

  149. Wunderink RG, Rello J, Cammarata SK, Croos-Dabrera RV, Kollef MH (2003) Linezolid vs vancomycin: analysis of two double-blind studies of patients with methicillin-resistant Staphylococcus aureus nosocomial pneumonia. Chest 124: 1789–1797

    Article  PubMed  Google Scholar 

  150. Sharpe JN, Shively EH, Polk HC (2005) Clinical and economic outcomes of oral linezolid versus intravenous vancomycin in the treatment of MRSA-complicated, lower-extremity skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. Am J Surg 189: 425–428

    Article  PubMed  Google Scholar 

  151. Weigelt J, Itani K, Stevens D, Lau W, Dryden M, Knirsch C (2005) Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother 49: 2260–2266

    Article  PubMed  Google Scholar 

  152. Weigelt J, Kaafarani HM, Itani KM, Swanson RN (2004) Linezolid eradicates MRSA better than vancomycin from surgical-site infections. Am J Surg 188: 760–766

    Article  PubMed  Google Scholar 

  153. Gang RK, Sanyal SC, Mokaddas E, Lari AR (1999) Rifampicin as an adjunct to vancomycin therapy in MRSA septicaemia in burns. Burns 25: 640–644

    Article  PubMed  Google Scholar 

  154. Grif K, Dierich MP, Pfaller K, Miglioli PA, Allerberger F (2001) In vitro activity of fosfomycin in combination with various antistaphylococcal substances. J Antimicrob Chemother 48: 209–217

    Article  PubMed  Google Scholar 

  155. Yzerman EP, Boelens HA, Vogel M, Verbrugh HA (1998) Efficacy and safety of teicoplanin plus rifampicin in the treatment of bacteraemic infections caused by Staphylococcus aureus. J Antimicrob Chemother 42: 233–239

    Article  PubMed  Google Scholar 

  156. Howden BP, Ward PB, Charles PG et al. (2004) Treatment outcomes for serious infections caused by methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility. Clin Infect Dis 38: 521–528

    Article  PubMed  Google Scholar 

  157. Baddour LM, Yu VL, Klugman KP et al. (2004) Combination antibiotic therapy lowers mortality among severely ill patients with pneumococcal bacteremia. Am J Respir Crit Care Med 170: 440–444

    Article  PubMed  Google Scholar 

  158. Nguyen MH, Peacock JE, Tanner DC et al. (1995) Therapeutic approaches in patients with candidemia. Evaluation in a multicenter, prospective, observational study. Arch Intern Med 155: 2429–2435

    Article  PubMed  Google Scholar 

  159. Jacobs S, Price Evans DA, Tariq M, al Omar NF (2003) Fluconazole improves survival in septic shock: a randomized double-blind prospective study. Crit Care Med 31: 1938–1946

    Article  PubMed  Google Scholar 

  160. Bochud PY, Glauser MP, Calandra T (2001) Antibiotics in sepsis. Intensive Care Med 27 (Suppl): S33–48

    Article  PubMed  Google Scholar 

  161. Sobel JD, Rex JH (2001) Invasive candidiasis: turning risk into a practical prevention policy? Clin Infect Dis 33: 187–190

    Article  PubMed  Google Scholar 

  162. Link H, Bohme A, Cornely OA et al. (2003) Antimicrobial therapy of unexplained fever in neutropenic patients — guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO), Study Group Interventional Therapy of Unexplained Fever, Arbeitsgemeinschaft Supportivmassnahmen in der Onkologie (ASO) of the Deutsche Krebsgesellschaft (DKG-German Cancer Society). Ann Hematol 82 (Suppl): S105–117

    Article  PubMed  Google Scholar 

  163. Sektion Infektionen in der Hämatologie/Onkologie der Paul-Ehrlich-Gesellschaft e.V. (2004) Diagnostik und Therapie von Infektionen bei Patienten in der Hämatologie und Onkologie. Chemother J 13: 134–141

    Article  Google Scholar 

  164. Phillips P, Shafran S, Garber G et al. (1997) Multicenter randomized trial of fluconazole versus amphotericin B for treatment of candidemia in non-neutropenic patients. Canadian Candidemia Study Group. Eur J Clin Microbiol Infect Dis 16: 337–345

    Google Scholar 

  165. Anaissie EJ, Vartivarian SE, Abi-Said D et al. (1996) Fluconazole versus amphotericin B in the treatment of hematogenous candidiasis: a matched cohort study. Am J Med 101: 170–176

    Article  PubMed  Google Scholar 

  166. Driessen M, Ellis JB, Cooper PA et al. (1996) Fluconazole vs. amphotericin B for the treatment of neonatal fungal septicemia: a prospective randomized trial. Pediatr Infect Dis J 15: 1107–1112

    Article  PubMed  Google Scholar 

  167. Rivers E, Nguyen B, Havstad S et al. (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377

    Article  PubMed  Google Scholar 

  168. Swenson JD, Bull D, Stringham J (2001) Subjective assessment of left ventricular preload using transesophageal echocardiography: corresponding pulmonary artery occlusion pressures. J Cardiothorac Vasc Anesth 15: 580–583

    Article  PubMed  Google Scholar 

  169. Buhre W, Buhre K, Kazmaier S, Sonntag H, Weyland A (2001) Assessment of cardiac preload by indicator dilution and transoesophageal echocardiography. Eur J Anaesthesiol 18: 662–667

    Article  PubMed  Google Scholar 

  170. Kumar A, Anel R, Bunnell E et al. (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32: 691–699

    Article  PubMed  Google Scholar 

  171. Godje O, Peyerl M, Seebauer T, Lamm P, Mair H, Reichart B (1998) Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes as preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg 13: 533–539

    Article  PubMed  Google Scholar 

  172. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350: 2247–2256

    Article  PubMed  Google Scholar 

  173. Schierhout G, Roberts I (1998) Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomised trials. BMJ 316: 961–964

    PubMed  Google Scholar 

  174. Alderson P, Bunn F, Lefebvre C et al. (2002) Human albumin solution for resuscitation and volume expansion in critically ill patients. Cochrane Database Syst Rev CD001208

  175. Meier-Hellmann A (2000) Hämodynamische Stabilisierung in der Sepsis. Anästhesiol Intensivmed 41: 601–613

    Google Scholar 

  176. Gattinoni L, Brazzi L, Pelosi P et al. (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333: 1025–1032

    Article  PubMed  Google Scholar 

  177. Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30: 1686–1692

    Article  PubMed  Google Scholar 

  178. Hayes MA, Yau EH, Timmins AC, Hinds CJ, Watson D (1993) Response of critically ill patients to treatment aimed at achieving supranormal oxygen delivery and consumption. Relationship to outcome. Chest 103: 886–895

    PubMed  Google Scholar 

  179. Mullner M, Urbanek B, Havel C, Losert H, Waechter F, Gamper G (2004) Vasopressors for shock. Cochrane Database Syst Rev CD003709

  180. Martin C, Viviand X, Leone M, Thirion X (2000) Effect of norepinephrine on the outcome of septic shock. Crit Care Med 28: 2758–2765

    Article  PubMed  Google Scholar 

  181. Levy B, Bollaert PE, Charpentier C et al. (1997) Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med 23: 282–287

    Article  PubMed  Google Scholar 

  182. Meier-Hellmann A, Reinhart K, Bredle DL, Specht M, Spies CD, Hannemann L (1997) Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med 25: 399–404

    Article  PubMed  Google Scholar 

  183. Prielipp RC, MacGregor DA, Royster RL, Kon ND, Hines MH, Butterworth JF (1998) Dobutamine antagonizes epinephrine’s biochemical and cardiotonic effects: results of an in vitro model using human lymphocytes and a clinical study in patients recovering from cardiac surgery. Anesthesiology 89: 49–57

    Article  PubMed  Google Scholar 

  184. Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J (2000) Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 356: 2139–2143

    Article  PubMed  Google Scholar 

  185. Marik PE, Iglesias J (1999) Low-dose dopamine does not prevent acute renal failure in patients with septic shock and oliguria. NORASEPT II Study Investigators. Am J Med 107: 387–390

    Article  PubMed  Google Scholar 

  186. Chertow GM, Sayegh MH, Allgren RL, Lazarus JM (1996) Is the administration of dopamine associated with adverse or favorable outcomes in acute renal failure? Auriculin Anaritide Acute Renal Failure Study Group. Am J Med 101: 49–53

    Article  PubMed  Google Scholar 

  187. Kellum JA, J MD (2001) Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med 29: 1526–1531

    Article  PubMed  Google Scholar 

  188. Marik PE (2002) Low-dose dopamine: a systematic review. Intensive Care Med 28: 877–883

    Article  PubMed  Google Scholar 

  189. Debaveye YA, Van den Berghe GH (2004) Is there still a place for dopamine in the modern intensive care unit? Anesth Analg 98: 461–468

    Article  PubMed  Google Scholar 

  190. Meier-Hellmann A, Bredle DL, Specht M, Hannemann L, Reinhart K (1999) Dopexamine increases splanchnic blood flow but decreases gastric mucosal pH in severe septic patients treated with dobutamine. Crit Care Med 27: 2166–2171

    Article  PubMed  Google Scholar 

  191. Bennett ED (1998) Dopexamine: much more than a vasoactive agent. Crit Care Med 26: 1621–1622

    Article  PubMed  Google Scholar 

  192. Byers RJ, Eddleston JM, Pearson RC, Bigley G, McMahon RF (1999) Dopexamine reduces the incidence of acute inflammation in the gut mucosa after abdominal surgery in high-risk patients. Crit Care Med 27: 1787–1793

    Article  PubMed  Google Scholar 

  193. Kiefer P, Tugtekin I, Wiedeck H et al. (2000) Effect of a dopexamine-induced increase in cardiac index on splanchnic hemodynamics in septic shock. Am J Respir Crit Care Med 161: 775–779

    PubMed  Google Scholar 

  194. Schmidt W, Hacker A, Gebhard MM, Martin E, Schmidt H (1998) Dopexamine attenuates endotoxin-induced microcirculatory changes in rat mesentery: role of beta2 adrenoceptors. Crit Care Med 26: 1639–1645

    Article  PubMed  Google Scholar 

  195. Dunser MW, Mayr AJ, Ulmer H et al. (2003) Arginine vasopressin in advanced vasodilatory shock: a prospective, randomized, controlled study. Circulation 107: 2313–2319

    Article  PubMed  Google Scholar 

  196. Tsuneyoshi I, Yamada H, Kakihana Y, Nakamura M, Nakano Y, Boyle WA (2001) Hemodynamic and metabolic effects of low-dose vasopressin infusions in vasodilatory septic shock. Crit Care Med 29: 487–493

    Article  PubMed  Google Scholar 

  197. Malay MB, Ashton RC, Jr., Landry DW, Townsend RN (1999) Low-dose vasopressin in the treatment of vasodilatory septic shock. J Trauma 47: 699–703

    PubMed  Google Scholar 

  198. Patel BM, Chittock DR, Russell JA, Walley KR (2002) Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 96: 576–582

    Article  PubMed  Google Scholar 

  199. Dunser MW, Mayr AJ, Tur A et al. (2003) Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med 31: 1394–1398

    Article  PubMed  Google Scholar 

  200. Mutlu GM, Factor P (2004) Role of vasopressin in the management of septic shock. Intensive Care Med 30: 1276–1291

    PubMed  Google Scholar 

  201. Hopkins RO, Weaver LK, Pope D, Orme JF, Bigler ED, Larson LV (1999) Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am J Respir Crit Care Med 160: 50–56

    PubMed  Google Scholar 

  202. Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308

    Article  PubMed  Google Scholar 

  203. Amato MB, Barbas CS, Medeiros DM et al. (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338: 347–354

    Article  PubMed  Google Scholar 

  204. Bidani A, Tzouanakis AE, Cardenas VJ, Zwischenberger JB (1994) Permissive hypercapnia in acute respiratory failure. JAMA 272: 957–962

    Article  PubMed  Google Scholar 

  205. Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22: 1568–1578

    PubMed  Google Scholar 

  206. Martin GS, Bernard GR (2001) Airway and lung in sepsis. Intensive Care Med 27 (Suppl 1): S63–79

    Article  PubMed  Google Scholar 

  207. Gattinoni L, Tognoni G, Pesenti A et al. (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345: 568–573

    Article  PubMed  Google Scholar 

  208. Guerin C, Gaillard S, Lemasson S et al. (2004) Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 292: 2379–2387

    Article  PubMed  Google Scholar 

  209. Lundin S, Mang H, Smithies M, Stenqvist O, Frostell C (1999) Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. The European Study Group of Inhaled Nitric Oxide. Intensive Care Med 25: 911–919

    Article  PubMed  Google Scholar 

  210. Taylor RW, Zimmerman JL, Dellinger RP et al. (2004) Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA 291: 1603–1609

    Article  PubMed  Google Scholar 

  211. Sokol J, Jacobs SE, Bohn D (2003) Inhaled nitric oxide for acute hypoxic respiratory failure in children and adults: a meta-analysis. Anesth Analg 97: 989–998

    Article  PubMed  Google Scholar 

  212. Esteban A, Alia I, Gordo F et al. (1997) Extubation outcome after spontaneous breathing trials with T-tube or pressure support ventilation. The Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med 156: 459–465

    Google Scholar 

  213. Esteban A, Alia I, Tobin MJ et al. (1999) Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med 159: 512–518

    PubMed  Google Scholar 

  214. Ely EW, Baker AM, Dunagan DP et al. (1996) Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med 335: 1864–1869

    Article  PubMed  Google Scholar 

  215. Ely EW, Bennett PA, Bowton DL, Murphy SM, Florance AM, Haponik EF (1999) Large scale implementation of a respiratory therapist-driven protocol for ventilator weaning. Am J Respir Crit Care Med 159: 439–446

    PubMed  Google Scholar 

  216. Bone RC, Fisher CJ, Jr., Clemmer TP, Slotman GJ, Metz CA, Balk RA (1987) A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317: 653–658

    PubMed  Google Scholar 

  217. The Veterans Administration Systemic Sepsis Cooperative Study Group (1987) Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. N Engl J Med 317: 659–665

    PubMed  Google Scholar 

  218. Annane D, Sebille V, Charpentier C et al. (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288: 862–871

    Article  PubMed  Google Scholar 

  219. Marik PE, Zaloga GP (2003) Adrenal insufficiency during septic shock. Crit Care Med 31: 141–145

    Article  PubMed  Google Scholar 

  220. Zaloga GP, Marik P (2001) Hypothalamic-pituitary-adrenal insufficiency. Crit Care Clin 17: 25–41

    Article  PubMed  Google Scholar 

  221. Dunn JF, Nisula BC, Rodbard D (1981) Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab 53: 58–68

    PubMed  Google Scholar 

  222. Beishuizen A, Thijs LG, Vermes I (2001) Patterns of corticosteroid-binding globulin and the free cortisol index during septic shock and multitrauma. Intensive Care Med 27: 1584–1591

    Article  PubMed  Google Scholar 

  223. Keh D, Boehnke T, Weber-Cartens S et al. (2003) Immunologic and hemodynamic effects of „low-dose“ hydrocortisone in septic shock: a double-blind, randomized, placebo-controlled, crossover study. Am J Respir Crit Care Med 167: 512–520

    Article  PubMed  Google Scholar 

  224. Bernard GR, Vincent JL, Laterre PF et al. (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709

    Article  PubMed  Google Scholar 

  225. Deans KJ, Minneci PC, Eichacker PQ, Natanson C (2004) The efficacy of drotrecogin alfa depends on severity of illness. Crit Care Med 32: 2347

    Article  PubMed  Google Scholar 

  226. Angus DC, Laterre PF, Helterbrand J et al. (2004) The effect of drotrecogin alfa (activated) on long-term survival after severe sepsis. Crit Care Med 32: 2199–2206

    PubMed  Google Scholar 

  227. European Medicines Agency (2005) Committee for Medicinal Products for Human Use.http://www.emea.eu.int/pdfs/human/press/pr/12130705en.pdf

  228. Warren BL, Eid A, Singer P et al. (2001) Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 286: 1869–1878

    Article  PubMed  Google Scholar 

  229. Pildal J, Gotzsche PC (2004) Polyclonal immunoglobulin for treatment of bacterial sepsis: a systematic review. Clin Infect Dis 39: 38–46

    Article  PubMed  Google Scholar 

  230. Alejandria MM, Lansang MA, Dans LF, Mantaring JB (2000) Intravenous immunoglobulin for treating sepsis and septic shock. Cochrane Database Syst Rev CD001090

  231. Heyland DK, Dhaliwal R, Suchner U, Berger MM (2005) Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med 31: 327–337

    Article  PubMed  Google Scholar 

  232. Haupt MT, Jastremski MS, Clemmer TP, Metz CA, Goris GB (1991) Effect of ibuprofen in patients with severe sepsis: a randomized, double-blind, multicenter study. The Ibuprofen Study Group. Crit Care Med 19: 1339–1347

    PubMed  Google Scholar 

  233. Arons MM, Wheeler AP, Bernard GR et al. (1999) Effects of ibuprofen on the physiology and survival of hypothermic sepsis. Ibuprofen in Sepsis Study Group. Crit Care Med 27: 699–707

    Article  PubMed  Google Scholar 

  234. Bernard GR, Wheeler AP, Russell JA et al. (1997) The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group. N Engl J Med 336: 912–918

    Article  PubMed  Google Scholar 

  235. Takala J, Ruokonen E, Webster NR et al. (1999) Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 341: 785–792

    Article  PubMed  Google Scholar 

  236. Holcroft JW, Vassar MJ, Weber CJ (1986) Prostaglandin E1 and survival in patients with the adult respiratory distress syndrome. A prospective trial. Ann Surg 203: 371–378

    PubMed  Google Scholar 

  237. Bone RC, Slotman G, Maunder R et al. (1989) Randomized double-blind, multicenter study of prostaglandin E1 in patients with the adult respiratory distress syndrome. Prostaglandin E1 Study Group. Chest 96: 114–119

    PubMed  Google Scholar 

  238. Silverman HJ, Slotman G, Bone RC et al. (1990) Effects of prostaglandin E1 on oxygen delivery and consumption in patients with the adult respiratory distress syndrome. Results from the prostaglandin E1 multicenter trial. The Prostaglandin E1 Study Group. Chest 98: 405–410

    PubMed  Google Scholar 

  239. Abraham E, Baughman R, Fletcher E et al. (1999) Liposomal prostaglandin E1 (TLC C-53) in acute respiratory distress syndrome: a controlled, randomized, double-blind, multicenter clinical trial. TLC C-53 ARDS Study Group. Crit Care Med 27: 1478–1485

    Article  PubMed  Google Scholar 

  240. Yang S, Zhou M, Koo DJ, Chaudry IH, Wang P (1999) Pentoxifylline prevents the transition from the hyperdynamic to hypodynamic response during sepsis. Am J Physiol 277: H1036–1044

    PubMed  Google Scholar 

  241. Staubach KH, Schroder J, Stuber F, Gehrke K, Traumann E, Zabel P (1998) Effect of pentoxifylline in severe sepsis: results of a randomized, double-blind, placebo-controlled study. Arch Surg 133: 94–100

    Article  PubMed  Google Scholar 

  242. Lauterbach R, Pawlik D, Kowalczyk D, Ksycinski W, Helwich E, Zembala M (1999) Effect of the immunomodulating agent, pentoxifylline, in the treatment of sepsis in prematurely delivered infants: a placebo-controlled, double-blind trial. Crit Care Med 27: 807–814

    Article  PubMed  Google Scholar 

  243. Molnar Z, Shearer E, Lowe D (1999) N-Acetylcysteine treatment to prevent the progression of multisystem organ failure: a prospective, randomized, placebo-controlled study. Crit Care Med 27: 1100–1104

    Article  PubMed  Google Scholar 

  244. Zhang P, Bagby GJ, Stoltz DA, Summer WR, Nelson S (1998) Enhancement of peritoneal leukocyte function by granulocyte colony-stimulating factor in rats with abdominal sepsis. Crit Care Med 26: 315–321

    Article  PubMed  Google Scholar 

  245. Lundblad R, Nesland JM, Giercksky KE (1996) Granulocyte colony-stimulating factor improves survival rate and reduces concentrations of bacteria, endotoxin, tumor necrosis factor, and endothelin-1 in fulminant intra-abdominal sepsis in rats. Crit Care Med 24: 820–826

    Article  PubMed  Google Scholar 

  246. Karzai W, von Specht BU, Parent C et al. (1999) G-CSF during Escherichia coli versus Staphylococcus aureus pneumonia in rats has fundamentally different and opposite effects. Am J Respir Crit Care Med 159: 1377–1382

    PubMed  Google Scholar 

  247. Heard SO, Fink MP, Gamelli RL et al. (1998) Effect of prophylactic administration of recombinant human granulocyte colony-stimulating factor (filgrastim) on the frequency of nosocomial infections in patients with acute traumatic brain injury or cerebral hemorrhage. The Filgrastim Study Group. Crit Care Med 26: 748–754

    Article  PubMed  Google Scholar 

  248. Root RK, Lodato RF, Patrick W et al. (2003) Multicenter, double-blind, placebo-controlled study of the use of filgrastim in patients hospitalized with pneumonia and severe sepsis. Crit Care Med 31: 367–373

    Article  PubMed  Google Scholar 

  249. Bellomo R, Ronco C (1999) Continuous renal replacement therapy in the intensive care unit. Intensive Care Med 25: 781–789

    Article  PubMed  Google Scholar 

  250. Silvester W (1998) Outcome studies of continuous renal replacement therapy in the intensive care unit. Kidney Int Suppl 66: S138–141

    PubMed  Google Scholar 

  251. Journois D (1999) Hemofiltration during cardiopulmonary bypass. Minerva Anestesiol 65: 427–432

    PubMed  Google Scholar 

  252. Reeves JH, Butt WW, Shann F et al. (1999) Continuous plasmafiltration in sepsis syndrome. Plasmafiltration in Sepsis Study Group. Crit Care Med 27: 2096–2104

    Article  PubMed  Google Scholar 

  253. Churchwell KB, McManus ML, Kent P et al. (1995) Intensive blood and plasma exchange for treatment of coagulopathy in meningococcemia. J Clin Apheresis 10: 171–177

    PubMed  Google Scholar 

  254. Cade JF (1982) High risk of the critically ill for venous thromboembolism. Crit Care Med 10: 448–450

    PubMed  Google Scholar 

  255. Belch JJ, Lowe GD, Ward AG, Forbes CD, Prentice CR (1981) Prevention of deep vein thrombosis in medical patients by low-dose heparin. Scott Med J 26: 115–117

    PubMed  Google Scholar 

  256. Samama MM, Cohen AT, Darmon JY et al. (1999) A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. Prophylaxis in Medical Patients with Enoxaparin Study Group. N Engl J Med 341: 793–800

    Article  PubMed  Google Scholar 

  257. Pérez J, Dellinger RP (2001) Other supportive therapies in sepsis. Intensive Care Med 27 (Suppl): S116–127

    Article  PubMed  Google Scholar 

  258. Cestac P, Bagheri H, Lapeyre-Mestre M et al. (2003) Utilisation and safety of low molecular weight heparins: prospective observational study in medical inpatients. Drug Saf 26: 197–207

    Article  PubMed  Google Scholar 

  259. Barr J, Hecht M, Flavin KE, Khorana A, Gould MK (2004) Outcomes in critically ill patients before and after the implementation of an evidence-based nutritional management protocol. Chest 125: 1446–1457

    Article  PubMed  Google Scholar 

  260. Martin CM, Doig GS, Heyland DK, Morrison T, Sibbald WJ (2004) Multicentre, cluster-randomized clinical trial of algorithms for critical-care enteral and parenteral therapy (ACCEPT). CMAJ 170: 197–204

    PubMed  Google Scholar 

  261. Ibrahim EH, Mehringer L, Prentice D et al. (2002) Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. JPEN J Parenter Enteral Nutr 26: 174–181

    PubMed  Google Scholar 

  262. Kearns PJ, Chin D, Mueller L, Wallace K, Jensen WA, Kirsch CM (2000) The incidence of ventilator-associated pneumonia and success in nutrient delivery with gastric versus small intestinal feeding: a randomized clinical trial. Crit Care Med 28: 1742–1746

    Article  PubMed  Google Scholar 

  263. Gramlich L, Kichian K, Pinilla J, Rodych NJ, Dhaliwal R, Heyland DK (2004) Does enteral nutrition compared to parenteral nutrition result in better outcomes in critically ill adult patients? A systematic review of the literature. Nutrition 20: 843–848

    Article  PubMed  Google Scholar 

  264. Simpson F, Doig GS (2005) Parenteral vs. enteral nutrition in the critically ill patient: a meta-analysis of trials using the intention to treat principle. Intensive Care Med 31: 12–23

    Article  PubMed  Google Scholar 

  265. Braunschweig CL, Levy P, Sheean PM, Wang X (2001) Enteral compared with parenteral nutrition: a meta-analysis. Am J Clin Nutr 74: 534–542

    PubMed  Google Scholar 

  266. Gadek JE, DeMichele SJ, Karlstad MD et al. (1999) Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group. Crit Care Med 27: 1409–1420

    Article  PubMed  Google Scholar 

  267. Galban C, Montejo JC, Mesejo A et al. (2000) An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med 28: 643–648

    Article  PubMed  Google Scholar 

  268. Bertolini G, Iapichino G, Radrizzani D et al. (2003) Early enteral immunonutrition in patients with severe sepsis: results of an interim analysis of a randomized multicentre clinical trial. Intensive Care Med 29: 834–840

    Article  PubMed  Google Scholar 

  269. Bower RH, Cerra FB, Bershadsky B et al. (1995) Early enteral administration of a formula (Impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial. Crit Care Med 23: 436–449

    Article  PubMed  Google Scholar 

  270. Stoner HB, Little RA, Frayn KN, Elebute AE, Tresadern J, Gross E (1983) The effect of sepsis on the oxidation of carbohydrate and fat. Br J Surg 70: 32–35

    PubMed  Google Scholar 

  271. Battistella FD, Widergren JT, Anderson JT, Siepler JK, Weber JC, MacColl K (1997) A prospective, randomized trial of intravenous fat emulsion administration in trauma victims requiring total parenteral nutrition. J Trauma 43: 52–58

    PubMed  Google Scholar 

  272. Goeters C, Wenn A, Mertes N et al. (2002) Parenteral L-alanyl-L-glutamine improves 6-month outcome in critically ill patients. Crit Care Med 30: 2032–2037

    Article  PubMed  Google Scholar 

  273. Griffiths RD, Allen KD, Andrews FJ, Jones C (2002) Infection, multiple organ failure, and survival in the intensive care unit: influence of glutamine-supplemented parenteral nutrition on acquired infection. Nutrition 18: 546–552

    Article  PubMed  Google Scholar 

  274. Griffiths RD, Jones C, Palmer TE (1997) Six-month outcome of critically ill patients given glutamine-supplemented parenteral nutrition. Nutrition 13: 295–302

    PubMed  Google Scholar 

  275. Powell-Tuck J, Jamieson CP, Bettany GE et al. (1999) A double blind, randomised, controlled trial of glutamine supplementation in parenteral nutrition. Gut 45: 82–88

    PubMed  Google Scholar 

  276. Schloerb PR, Amare M (1993) Total parenteral nutrition with glutamine in bone marrow transplantation and other clinical applications (a randomized, double-blind study). JPEN J Parenter Enteral Nutr 17: 407–413

    PubMed  Google Scholar 

  277. Wischmeyer PE, Lynch J, Liedel J et al. (2001) Glutamine administration reduces Gram-negative bacteremia in severely burned patients: a prospective, randomized, double-blind trial versus isonitrogenous control. Crit Care Med 29: 2075–2080

    Article  PubMed  Google Scholar 

  278. Ziegler TR, Young LS, Benfell K et al. (1992) Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation. A randomized, double-blind, controlled study. Ann Intern Med 116: 821–828

    PubMed  Google Scholar 

  279. Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P (2003) Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr 27: 355–373

    PubMed  Google Scholar 

  280. Borrero E, Bank S, Margolis I, Schulman ND, Chardavoyne R (1985) Comparison of antacid and sucralfate in the prevention of gastrointestinal bleeding in patients who are critically ill. Am J Med 79: 62–64

    Article  Google Scholar 

  281. Bresalier RS, Grendell JH, Cello JP, Meyer AA (1987) Sucralfate suspension versus titrated antacid for the prevention of acute stress-related gastrointestinal hemorrhage in critically ill patients. Am J Med 83: 110–116

    Article  Google Scholar 

  282. Cook D, Guyatt G, Marshall J et al. (1998) A comparison of sucralfate and ranitidine for the prevention of upper gastrointestinal bleeding in patients requiring mechanical ventilation. Canadian Critical Care Trials Group. N Engl J Med 338: 791–797

    Article  PubMed  Google Scholar 

  283. Stothert JC, Simonowitz DA, Dellinger EP et al. (1980) Randomized prospective evaluation of cimetidine and antacid control of gastric pH in the critically ill. Ann Surg 192: 169–174

    PubMed  Google Scholar 

  284. MacLaren R, Jarvis CL, Fish DN (2001) Use of enteral nutrition for stress ulcer prophylaxis. Ann Pharmacother 35: 1614–1623

    Article  PubMed  Google Scholar 

  285. Cooper DJ, Walley KR, Wiggs BR, Russell JA (1990) Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. A prospective, controlled clinical study. Ann Intern Med 112: 492–498

    PubMed  Google Scholar 

  286. Mathieu D, Neviere R, Billard V, Fleyfel M, Wattel F (1991) Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med 19: 1352–1356

    PubMed  Google Scholar 

  287. Kellum JA, Angus DC, Johnson JP et al. (2002) Continuous versus intermittent renal replacement therapy: a meta-analysis. Intensive Care Med 28: 29–37

    Article  PubMed  Google Scholar 

  288. Mehta RL, McDonald B, Gabbai FB et al. (2001) A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int 60: 1154–1163

    Article  PubMed  Google Scholar 

  289. Hébert PC, Wells G, Blajchman MA et al. (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 340: 409–417

    Article  PubMed  Google Scholar 

  290. Marik PE, Sibbald WJ (1993) Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA 269: 3024–3029

    Article  PubMed  Google Scholar 

  291. Lorente JA, Landin L, De Pablo R, Renes E, Rodriguez-Diaz R, Liste D (1993) Effects of blood transfusion on oxygen transport variables in severe sepsis. Crit Care Med 21: 1312–1318

    PubMed  Google Scholar 

  292. Corwin HL, Gettinger A, Rodriguez RM et al. (1999) Efficacy of recombinant human erythropoietin in the critically ill patient: a randomized, double-blind, placebo-controlled trial. Crit Care Med 27: 2346–2350

    Article  PubMed  Google Scholar 

  293. Corwin HL, Gettinger A, Pearl RG et al. (2002) Efficacy of recombinant human erythropoietin in critically ill patients: a randomized controlled trial. JAMA 288: 2827–2835

    Article  PubMed  Google Scholar 

  294. Vorstand und Wissenschaftlicher Beirat der Bundesärztekammer (2003) Leitlinien zur Therapie mit Blutkomponenten und Plasmaderivaten. Deutscher Ärzte-Verlag, Köln

  295. Kress JP, Pohlman AS, O’Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342: 1471–1477

    Article  PubMed  Google Scholar 

  296. Rossiter A, Souney PF, McGowan S, Carvajal P (1991) Pancuronium-induced prolonged neuromuscular blockade. Crit Care Med 19: 1583–1587

    PubMed  Google Scholar 

  297. Partridge BL, Abrams JH, Bazemore C, Rubin R (1990) Prolonged neuromuscular blockade after long-term infusion of vecuronium bromide in the intensive care unit. Crit Care Med 18: 1177–1179

    Google Scholar 

  298. Vanderheyden BA, Reynolds HN, Gerold KB, Emanuele T (1992) Prolonged paralysis after long-term vecuronium infusion. Crit Care Med 20: 304–307

    PubMed  Google Scholar 

  299. Meyer KC, Prielipp RC, Grossman JE, Coursin DB (1994) Prolonged weakness after infusion of atracurium in two intensive care unit patients. Anesth Analg 78: 772–774

    PubMed  Google Scholar 

  300. Manthous CA, Chatila W (1994) Prolonged weakness after the withdrawal of atracurium. Am J Respir Crit Care Med 150: 1441–1443

    PubMed  Google Scholar 

  301. Prielipp RC, Coursin DB, Scuderi PE et al. (1995) Comparison of the infusion requirements and recovery profiles of vecuronium and cisatracurium 51W89 in intensive care unit patients. Anesth Analg 81: 3–12

    Article  PubMed  Google Scholar 

Download references

Danksagung.

Unser besonderer Dank gilt Frau PD Dr. I. Kopp und PD Dr. A. Bauhofer, Marburg von der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF), welche die Entwicklung der vorliegenden Leitlinien methodisch begleitet haben und Herrn Dr. F. Bloos, Jena, welcher die Redaktionsarbeit begleitet hat.

Das Leitlinienprojekt wurde vom Deutschen Kompetenznetzwerk Sepsis (SepNet), gefördert vom Bundesministerium für Bildung und Forschung (BMBF), Förderkennzeichen: 01KI 0106 unterstützt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Brunkhorst.

Anmerkung

Leitlinien gelten für Standardsituationen und berücksichtigen die aktuellen wissenschaftlichen Erkenntnisse. Durch die Leitlinien soll die Methodenfreiheit des Arztes nicht eingeschränkt werden. Die vorliegenden Leitlinien wurden von den Autoren mit größter Sorgfalt erarbeitet, dennoch kann für die Richtigkeit — insbesondere von Dosierungsangaben — keine Verantwortung übernommen werden.

Mitglieder der Leitlinienkomitees

Leitung: K. Reinhart, Jena

Redaktion und Koordination: F.M. Brunkhorst, Jena

Moderation: I. Kopp, Marburg, A. Bauhofer, Marburg

Teilnehmer: K. Reinhart, F. M. Brunkhorst, M. Bauer, F. Bloos, H.-G. Bone, H. Gerlach, M. Gründling, G. Kreymann, P. Kujath, G. Marggraf, G. Marx, K. Mayer, A. Meier-Hellmann, C. Peckelsen, C. Putensen, M. Quintel, M. Ragaller, R. Rossaint, F. Stüber, N. Weiler, T. Welte, K. Werdan

Unter Mitwirkung der

Deutschen Gesellschaft für Chirurgie (DGCH; [P.K.]), Deutschen Gesellschaft für Anästhesiologie und Notfallmedizin (DGAI; [R.R.]), Deutschen Gesellschaft für Herz-, Thorax- und Gefäßchirurgie (DGHTG; [G.M]), Deutschen Gesellschaft für Internistische Intensivmedizin und Notfallmedizin (DGIIN; [G.K.]), Deutschen Gesellschaft für Klinische Chemie und Laboratoriumsmedizin (DGKL), Deutschen Gesellschaft für Ernährungsmedizin (DGEM; [G.K.]), Deutschen Gesellschaft für Neurochirurgie (DGNC), Deutschen Gesellschaft für Neurologie (DGN), Deutschen Gesellschaft für Kardiologie (DGK; [K.W.]), Deutschen Gesellschaft für Innere Medizin (DGIM; [K.W.])

Verabschiedet von den Vorständen der beteiligten Fachgesellschaften am 15.12.2005.

Mit Unterstützung des Kompetenznetzwerkes Sepsis (SepNet), gefördert vom Bundesministerium für Bildung und Forschung (BMBF), Förderkennzeichen: 01 KI 0106.

Hinweis

Das komplette Literaturverzeichnis und der Methodenreport können auf der Homepage der AWMF (http://awmf.org) und der DSG (http://www.sepsis-gesellschaft.de) eingesehen werden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhart, K., Brunkhorst, F.M., Bone, H.G. et al. Diagnose und Therapie der Sepsis. Internist 47, 356–373 (2006). https://doi.org/10.1007/s00108-006-1595-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-006-1595-x

Schlüsselwörter

Keywords

Navigation