Skip to main content
Log in

Biological durability and moisture dynamics of untreated and thermally modified poplar

  • Original Article
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Cross laminated timber (CLT) and glue laminated timber (glulam or GLT) are gaining attention given their use in high-rise buildings as climate mitigation concept. In most cases softwood is used to manufacture these engineered wood products, yet fast-growing and widespread hardwood species such as hybrid poplar have potential to meet the increasing demand. In addition to the mechanical performance, it is also key to investigate the fungal susceptibility and moisture dynamics of poplar, to gain insight into the service life of engineered poplar products. This paper therefore investigates the fungal decay resistance, as well as the moisture sorption properties of (thermally modified) hybrid poplar clones and Norway spruce. Fungal decay resistance was tested using the mini-block test. Moisture dynamics were evaluated using a floating test and dynamic vapor sorption (DVS). A higher fungal decay resistance and a significant decrease of moisture sorption was observed for thermally modified poplar. Our results show that the overall moisture properties of poplar and spruce are similar and that differences among the poplar clones are negligible, demonstrating the potential of poplar wood for engineered wood products. Together with findings on the mechanical properties in the literature, these results on durability and moisture performance give extra support for the potential utilization of poplar CLT in constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Altgen M, Militz H (2017) Thermally modified Scots pine and Norway spruce wood as substrate for coating systems. J Coat Technol Res 14:531–541. https://doi.org/10.1007/s11998-016-9871-8

    Article  CAS  Google Scholar 

  • Austigard MS, Mattsson J (2020) Fungal damages in Norwegian massive timber elements—a case study. Wood Mat Sci Eng 15:326–334. https://doi.org/10.1080/17480272.2020.1801835

    Article  CAS  Google Scholar 

  • Ayanleye S, Udele K, Nasir V, Zhang X, Militz H (2022) Durability and protection of mass timber structures: a review. J Build Eng 46:103731. https://doi.org/10.1016/j.jobe.2021.103731

    Article  Google Scholar 

  • Bak M, Németh R (2012) Changes in swelling properties and moisture uptake rate of oil-heat-treated poplar (Populus × euramericana cv. Pannónia) wood. BioResources 7:5128–5137. https://doi.org/10.15376/biores.7.4.5128-5137

    Article  Google Scholar 

  • Balatinecz J, Mertens P, De Boever L, Yukun H, Jin J, Van Acker J (2014) Properties, processing and utilization. In: Isebrands JG, Richardson J (eds) Chapter 10 in Poplars and willows: trees for society and the environment. ISBN 978-1-78064-108-9 (hbk)-ISBN 978-9251071854 (co-publisher FAO), p 634

  • Bao M, Huang X, Jiang M, Yu W, Yu Y (2017) Effect of thermo-hydro-mechanical densification on microstructure and properties of poplar wood (Populus tomentosa). J Wood Sci 63:591–605. https://doi.org/10.1007/s10086-017-1661-0

    Article  CAS  Google Scholar 

  • Bravery A (1978) A miniaturised wood-block test for the rapid evaluation of wood preservative fungicides. In: Screening techniques for potential wood preservative chemicals. Proceedings of a special seminar held in association with the 10th annual meeting of the IRG. Peebles, pp 57–65

  • Brischke C, Alfredsen G (2020) Wood–water relationships and their role for wood susceptibility to fungal decay. Appl Microbiol Biotechnol 104:3781–3795. https://doi.org/10.1007/s00253-020-10479-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brischke C, Meyer L, Hesse C, Van Acker J, De Windt I, Van den Bulcke J, Conti E, Humar M, Viitanen H, Kutnik M, Malassenet L (2014). Moisture dynamics of wood and wood-based products—results from an inter-laboratory test. In: Proceedings IRG annual meeting, IRG/WP 14-20539

  • Brito AF, Calonego FW, Bond BH, Severo ETD (2018) Color changes, EMC and biological resistance of thermally modified yellow poplar. Wood Fiber Sci 50:439–446

    Article  CAS  Google Scholar 

  • Castro G, Paganini F (2003) Mixed glued laminated timber of poplar and Eucalyptus grandis clones. Holz Roh Werkst 61:291–298. https://doi.org/10.1007/s00107-003-0393-6

    Article  Google Scholar 

  • CEN TS 16818 (2018) Durability of wood and wood-based products—moisture dynamics of wood and wood-based products. European Committee for Standardization, Brussels

  • De Boever L, Vansteenkiste D, Van Acker J et al (2007) End-use related physical and mechanical properties of selected fast-growing poplar hybrids (Populus trichocarpa × P. deltoides). Ann for Sci 64:621–630. https://doi.org/10.1051/forest:2007040

    Article  Google Scholar 

  • De Ligne L (2021) Fungal susceptibility of bio-based building materials. PhD thesis, Ghent University, Belgium

  • De Ligne L, Van den Bulcke J, Baetens J, De Baets B, Wang G, De Windt I, Van Acker J (2021) Unraveling the natural durability of wood: revealing the impact of decay-influencing characteristics other than fungicidal components. Holzforschung 75(4):368–378. https://doi.org/10.1515/hf-2020-0109

    Article  CAS  Google Scholar 

  • De Ligne L, Van Acker J, Baetens JM, Omar S, De Baets B, Thygesen LG, Jan Van den Bulcke J, Thybring EE (2022) Moisture dynamics of wood-based panels and wood fibre insulation materials. Front Plant Sci. https://doi.org/10.3389/fpls.2022.951175

    Article  PubMed  PubMed Central  Google Scholar 

  • De Windt I, Li W, Van den Bulcke J, Van Acker J (2018) Classification of uncoated plywood based on moisture dynamics. Constr Build Mater 158:814–822. https://doi.org/10.1016/j.conbuildmat.2017.09.194

    Article  Google Scholar 

  • Deklerck V, De Ligne L, Van den Bulcke J, Espinoza E, Beeckman H, Van Acker J (2019) Determining the natural durability on xylarium samples: mini-block test and chemical profiling. In: Proceedings IRG annual meeting, IRG/WP 19-10944

  • Deklerck V, De Ligne L, Espinoza E, Beeckman H, Van den Bulcke J, Van Acker J (2020a) Assessing the natural durability of xylarium specimens: mini-block testing and chemical fingerprinting for small-sized samples. Wood Sci Technol 54:981–1000

    Article  CAS  Google Scholar 

  • Deklerck V, De Ligne L, Espinoza E, Beeckman H, Van den Bulcke J, Van Acker J (2020b) Assessing the natural durability of xylarium specimens: mini-block testing and chemical fingerprinting for small-sized samples. Wood Sci Technol 54(4):981–1000. https://doi.org/10.1007/s00226-020-01186-1

    Article  CAS  Google Scholar 

  • Dong Y, Wang K, Li J, Zhang S, Shi SQ (2020) Environmentally benign wood modifications: a review. ACS Sustain Chem Eng 8(9):3532–3540. https://doi.org/10.1021/acssuschemeng.0c00342

    Article  CAS  Google Scholar 

  • EN 113-2 (2021) Durability of wood and wood-based products—test method against wood destroying basidiomycetes—part 2: assessment of inherent or enhanced durability. European Committee for Standardization, Brussels

  • EN 335 (2013) Durability of wood and wood-based products—use classes: definitions, application to solid wood and wood-based products. European Committee for Standardization, Brussels

  • EN 350 (2016) Durability of wood and wood-based products—testing and classification of the durability to biological agents of wood and wood-based materials; European Committee for Standardization, Brussels

  • Engelund ET (2011) Wood–water interactions: linking molecular level mechanisms with macroscopic performance. Technical University of Denmark. Rapport no. R-258

  • Engelund ET, Klamer M, Venås M (2010) Acquisition of sorption isotherms for modified woods by the use of dynamic vapour sorption instrumentation: principles and practice. In: 41st annual meeting of the international research group on wood protection, Biarritz, France, 9–13 May 2010. IRG Secretariat

  • Engelund ET, Klamer M, Venås TM (2011) Adsorption boundary curve influenced by step interval of relative humidity investigated by dynamic vapour sorption equipment. In: Proceedings IRG annual meeting, IRG/WP 11-40547

  • Engelund ET, Thygesen LG, Svensson S et al (2013) A critical discussion of the physics of wood–water interactions. Wood Sci Technol 47:141–161. https://doi.org/10.1007/s00226-012-0514-7

    Article  CAS  Google Scholar 

  • Fredriksson M (2019) On wood–water interactions in the over-hygroscopic moisture range–mechanisms, methods, and influence of wood modification. Forests. https://doi.org/10.3390/f10090779

    Article  Google Scholar 

  • Hakkou M, Pétrissans M, El Bakali I, Gerardin P, Zoulalian A (2005) Wettability changes and mass loss during heat treatment of wood. Holzforschung 59:35–37. https://doi.org/10.1515/HF.2005.006

    Article  CAS  Google Scholar 

  • Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112(3):1524–1537. https://doi.org/10.1002/app.29725

    Article  CAS  Google Scholar 

  • Hill CAS, Ramsay J, Laine K, Rautkari L, Hughes M (2013) Water vapour sorption behaviour of ther-mally modified wood. Int Wood Prod J 4:191–196. https://doi.org/10.1179/2042645313Y.0000000040

    Article  Google Scholar 

  • Hill CAS, Altgen M, Rautkari L (2021) Thermal modification of wood—a review: chemical changes and hygroscopicity. J Mater Sci 56:6581–6614. https://doi.org/10.1007/s10853-020-05722-z

    Article  CAS  Google Scholar 

  • Hoffmeyer P, Jensen SK, Jones D, Klinke HC, Felby C (2003) Sorption properties of steam treated wood and plant fibres. In: Proceedings of the 1st European conference on wood modification, Ghent, Belgium, pp 177–189

  • Humar M, Kržišnik D, Lesar B, Dujič B (2020) Monitoring a building made of CLT in Ljubljana. Wood Mat Sci Eng 15(6):335–342. https://doi.org/10.1080/17480272.2020.1712740

    Article  Google Scholar 

  • Kramer A, Barbosa AR, Sinha A (2014) Viability of hybrid poplar in ANSI approved cross-laminated timber applications. J Mater Civ Eng 26(7):25–29. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000936

    Article  Google Scholar 

  • Lesar B, Humar M, Kamke FA, Kutnar A, Lesar B, Humar ÁM, Kamke FA, Kutnar A (2013) Influence of the thermo-hydro-mechanical treatments of wood on the performance against wood-degrading fungi. Wood Sci Technol 47:977–992. https://doi.org/10.1007/s00226-013-0553-8

    Article  CAS  Google Scholar 

  • Li W, Zhang Z, Wang X, Mei C, Van Acker J, Van Den Bulcke J (2021) Understanding the effect of growth ring orientation on the compressive strength perpendicular to the grain of thermally treated wood. Wood Sci Technol 55:1439–1456. https://doi.org/10.1007/s00226-021-01323-4

    Article  CAS  Google Scholar 

  • Llana DF, Gonzalez-Alegre V, Portela M, Iniguez-Gonzalez G (2022) Cross laminated timber (CLT) manufactured with European oak recovered from demolition: Structural properties and non-destructive evaluation. Constr Build Mater 339:127635

    Article  Google Scholar 

  • Martins C, Dias AMPG, Cruz H (2017) Glulam made by poplar: delamination and shear strength tests. In: ISCHP 17-international scientific conference on hardwood processing, April 2020. http://urn.fi/URN:ISBN:978-952-326-509-7

  • Monteiro SRS, Martins C, Dias AMPG, Cruz H (2020) Mechanical performance of glulam products made with Portuguese poplar. Eur J Wood Prod 78:5–6. https://doi.org/10.1007/s00107-020-01569-y

    Article  CAS  Google Scholar 

  • Niemz P, Sandberg D (2019) Wood modification in Switzerland. In: Wood modification in Europe—a state-of-the-art about processes, products and applications, vol 5846. https://www.fupress.com/catalogo/wood-modification-in-europe/4008

  • Öberg J, Wiege E (2018) Moisture risks with CLT-panels subjected to outdoor climate during construction-focus on mould and wetting processes Fuktrisker på KL-trä som utsätts för yttre klimat under produktion-fokus på mögel och uppfuktning, p 84. http://www.diva-portal.org/smash/get/diva2:1222631/FULLTEXT01.pdf

  • Olsson L (2021) CLT construction without weather protection requires extensive moisture control. J Build Phys. https://doi.org/10.1177/1744259121996388

    Article  Google Scholar 

  • Papadopoulos AN, Hill CAS (2003) The sorption of water vapour by anhydride modified softwood. Wood Sci Technol 37:221–231. https://doi.org/10.1007/s00226-003-0192-6

    Article  CAS  Google Scholar 

  • Raji AO, Ojediran JO (2011) Moisture sorption isotherms of two varieties of millet. Food Bioprod Process 89(3):178–184. https://doi.org/10.1016/j.fbp.2010.06.001

    Article  Google Scholar 

  • Rapp AO, Peek RD, Sailer M (2000) Modelling the moisture induced risk of decay for treated and untreated wood above ground. Holzforschung 54(2):111–118. https://doi.org/10.1515/HF.2000.019

    Article  CAS  Google Scholar 

  • Ruike M, Inoue T, Takada S et al (1999) Water sorption and drying behaviour of crosslinked dextrans. Biosci Biotech Nol Biochem 63:271–275. https://doi.org/10.1271/bbb.63.271

    Article  CAS  Google Scholar 

  • Sánchez-Machado JD, Muñoz-Acosta F, Moya R, Tenorio C (2022) Physical–mechanical properties of CLT cross laminated timber manufactured with tectona grandis and gmelina arborea from Costa Rican forest plantations. Revista Forestal Mesoamericana Kurú 19(44):29–39

    Google Scholar 

  • Sandberg D, Kutnar A, Mantanis G (2017) Wood modification technologies—a review. Iforest 10(6):895–908. https://doi.org/10.3832/ifor2380-010

    Article  Google Scholar 

  • Schirp A, Wolcott MP (2005) Influence of fungal decay and moisture absorption on mechanical properties of extruded wood–plastic composites. Wood Fiber Sci 37(4):643–652

    Google Scholar 

  • Seborg CO, Stamm AJ (1931) Sorption of water vapor by paper-making materials I—effect of beating. Ind Eng Chem 23:1271–1275

    Article  CAS  Google Scholar 

  • Shi JL, Kocaefe D, Amburgey T, Zhang J (2007) A comparative study on brown-rot fungus decay and sub-terranean termite resistance of thermally modified and ACQ-C treated wood. Holz Roh Werkst 65:353–358

    Article  CAS  Google Scholar 

  • Shi X, Yue K, Jiao X, Zhang Z, Li Z (2022) Experimental investigation into lateral performance of cross-laminated timber shear walls made from fast-growing poplar wood. Wood Mater Sci Eng. https://doi.org/10.1080/17480272.2022.2121659

    Article  Google Scholar 

  • Srivaro S, Lim H, Li M, Pasztory Z (2022) Properties of mixed species/density cross laminated timber made of rubberwood and coconut wood. Structures 40:237–246. https://doi.org/10.1016/j.istruc.2022.04.016

    Article  Google Scholar 

  • Thomas RE, Buehlmann U (2017) Using low-grade hardwoods for CLT production: a yield analysis. In: 6th international scientific conference on hardwood processing (ISCHP2017), vol 540, pp 199–206

  • Thygesen LG, Tang Engelund E, Hoffmeyer P (2010) Water sorption in wood and modified wood at high values of relative humidity. Part I: results for untreated, acetylated, and furfurylated Norway spruce. Holzforschung 64(3):315–323. https://doi.org/10.1515/HF.2010.044

    Article  CAS  Google Scholar 

  • Urquhart AR, Eckersall N (1930) The moisture relations of cotton: VII. A study of hysteresis. J Text Inst 21:T499–T510

    Article  Google Scholar 

  • Uwizeyimana P, Perrin M, Eyma F (2020) Moisture monitoring in glulam timber structures with embedded resistive sensors: study of influence parameters. Wood Sci Technol 54(6):1463–1478. https://doi.org/10.1007/s00226-020-01228-8

    Article  CAS  Google Scholar 

  • Van Acker J, De Smet J (2007, Nov) Moisture dynamics of plywood in exterior applications as a basis for service life prediction. In: Proceedings of the international panel products symposium (IPPS 2007), Cardiff, South Wales, UK, pp 47–60

  • Van Acker J, Michon S, Van den Bulcke J, De Windt I, Van Swaay B, Stevens M (2011) Limited variability in biological durability of thermally modified timber using vacuum based technology. In: Proceedings IRG annual meeting, IRG/WP 11-40567

  • Van Acker J, De Windt I, Li W, Van den Bulcke J (2014) Critical parameters on moisture dynamics in relation to time of wetness as factor in service life prediction. In: Proceedings IRG annual meeting, IRG/WP 14-20555

  • Van Acker J, Li W, Jiang X, Durimel M, De Ligne L, Parakhonskiy B, Skirtach A, Van den Bulcke J (Jan, 2023) Combining wood protection options to enhance resistance against decay and improve fire safety of engineered wood products like CLT. In: DBMC 2023. https://www.scipedia.com/public/Van_Acker_et_al_2023a. Accessed on 4 Dec 2023

  • Van den Bulcke J, De Windt I, Defoirdt N, De Smet J, Van Acker J (2011) Moisture dynamics and fungal susceptibility of plywood. Int Biodeterior Biodegradation 65(5):708–716. https://doi.org/10.1016/j.ibiod.2010.12.015

    Article  CAS  Google Scholar 

  • Wang JY, Stirling R, Morris PI, Taylor A, Lloyd J, Kirker G, Lebow S, Mankowski ME, Barnes HM, Morrell J (2018a) Durability of mass timber structures: a review of the biological risks. Wood Fiber Sci 50:110–127. https://doi.org/10.22382/wfs-2018-045

    Article  CAS  Google Scholar 

  • Wang Z, Winestrand S, Gillgren T, Jönsson LJ (2018b) Chemical and structural factors influencing enzymatic saccharification of wood from aspen, birch and spruce. Biomass Bioenerg 109(2):125–134. https://doi.org/10.1016/j.biombioe.2017.12.020

    Article  CAS  Google Scholar 

  • Yang T, Zhou H, Ma E, Wang J (2018) Effects of removal of different chemical components on moisture sorption property of Populus euramericana Cv. under dynamic hygrothermal conditions. Results Phys 10(4):61–68. https://doi.org/10.1016/j.rinp.2018.05.024

    Article  Google Scholar 

  • Yu Y, Jiang X, Ramaswamy HS, Zhu S, Li H (2018) Effect of high-pressure densification on moisture sorption properties of Paulownia wood. BioRes 13(2):2473–2486. https://doi.org/10.15376/biores.13.2.2473-2486

    Article  CAS  Google Scholar 

  • Yue K, Song X, Jiao X, Wang L, Jia C, Chen Z, Liu W (2020) An experimental study on flexural behavior of glulam beams made out of thermally treated fast-growing poplar laminae. Wood Fiber Sci 52(2):152–164

    Article  CAS  Google Scholar 

  • Yusoh A, Uyup M, Md Tahir P, Seng Hua L, Beng O (2022) Mechanical performance and failure characteristics of cross laminated timber (CLT) manufactured from tropical hardwoods species. Phys Sci Rev. https://doi.org/10.1515/psr-2022-0080

    Article  Google Scholar 

  • Zelinka SL, Altgen M, Emmerich L, Guigo N, Keplinger T, Kymäläinen M, Thybring EE, Thygesen LG (2022) Review of wood modification and wood functionalization technologies. Forests 13(7):1004. https://doi.org/10.3390/f13071004

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Stijn Willen for his help with the sample preparation. Thanks to Manon Minsart and Arn Mignon for their kind help with the DVS measurement. Thanks to Lieven De Boever and company Lignius (Netherlands) for providing the thermally modified poplar. We acknowledge the BOF Special Research Fund (BOF Starting Grant JVdB, BOFSTG2018000701) for financial support and special thanks to the China Scholarship Council (CSC file No. 201906320060) for supporting this Ph.D. program.

Author information

Authors and Affiliations

Authors

Contributions

XJ wrote the main manuscript text. All authors reviewed the manuscript and gave constructive suggestions.

Corresponding author

Correspondence to Xiuping Jiang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 68 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Van den Bulcke, J., De Ligne, L. et al. Biological durability and moisture dynamics of untreated and thermally modified poplar. Eur. J. Wood Prod. (2024). https://doi.org/10.1007/s00107-023-02033-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00107-023-02033-3

Navigation