Skip to main content
Log in

Lärminduzierte Neurodegeneration der zentralen Hörbahn

Eine Übersicht experimenteller Untersuchungen im Mausmodell

Noise-induced neurodegeneration in the central auditory pathway

An overview of experimental studies in a mouse model

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Ein Lärmtrauma induziert zentralnervöse Pathologien, die zur Generierung von Hör- und Wahrnehmungsstörungen führen.

Fragestellung

Sind degenerative Prozesse in der zentralen Hörbahn eine direkte Auswirkung der Überstimulation oder eine Folge akustischer Deprivation?

Material und Methode

Bestimmung von Zelltodmechanismen im Mausmodell eines lärminduzierten Hörverlusts zu verschiedenen Zeitpunkten nach einfacher oder wiederholter Lärmexposition.

Ergebnisse

Eine einmalige Lärmexposition (3 h, 115 dB SPL, 5–20 kHz) induziert akute (≤1 Tag) und längerfristige (Beobachtungszeitraum 14 Tage) Degeneration insbesondere in subkortikalen Strukturen. Nach einem wiederholten Lärmtrauma treten v. a. pathologische Veränderungen im auditorischen Thalamus und Kortex auf.

Schlussfolgerung

Lärm hat direkte Auswirkungen auf basale Strukturen der zentralen Hörbahn, eine Protektion kortikaler Areale erfolgt möglicherweise aufgrund inhibitorischer neuronaler Projektionen. Degenerative Mechanismen in höheren Strukturen des vorgeschädigten Systems deuten auf eine zunehmende Beeinträchtigung komplexer Verarbeitung akustischer Informationen.

Abstract

Background

A noise trauma induces central nervous system pathologies, which generate deficits in hearing and perception of sound.

Objective

Are degenerative mechanisms in the central auditory system a direct impact of overstimulation or an effect of acoustic deprivation?

Materials and methods

Detection of cell death in a mouse model of noise-induced hearing loss at different times after single or repeated noise exposure.

Results

A single noise exposure (3 h, 115 dB SPL, 5–20 kHz) induces acute (≤1 day) and long-term (observation period 14 days) degeneration, particularly in subcortical structures. Repeated noise trauma is followed by pathologies in the auditory thalamus and cortex.

Conclusion

Noise has a direct impact on basal structures of the central auditory system; a protection of cortical areas is possibly due to inhibitory neuronal projections. Degenerative mechanisms in higher structures of the pre-damaged system point to an increased impairment of complex processing of acoustic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Aarnisalo AA, Pirvola U, Liang XQ et al (2000) Apoptosis in auditory brainstem neurons after a severe noise trauma of the organ of corti: intracochlear GDNF treatment reduces the number of apoptotic cells. ORL J Otorhinolaryngol Relat Spec 62:330–334

    Article  CAS  PubMed  Google Scholar 

  2. Basta D, Ernst A (2005) Erratum to “Noise-induced changes of neuronal spontaneous activity in mice inferior colliculus brain slices”. Neurosci Lett 374:74–79

    Article  PubMed  Google Scholar 

  3. Basta D, Tzschentke B, Ernst A (2005) Noise-induced cell death in the mouse medial geniculate body and primary auditory cortex. Neurosci Lett 381:199–204

    Article  CAS  PubMed  Google Scholar 

  4. Bauer CA, Turner JG, Caspary DM et al (2008) Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res 86:2564–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Caspary DM, Llano DA (2017) Auditory thalamic circuits and GABAA receptor function: putative mechanisms in tinnitus pathology. Hear Res 349:197–207

    Article  CAS  PubMed  Google Scholar 

  6. Coordes A, Gröschel M, Ernst A et al (2012) Apoptotic cascades in the central auditory pathway after noise exposure. J Neurotrauma 29:1249–1254

    Article  PubMed  Google Scholar 

  7. Eggermont JJ (2017) Acquired hearing loss and brain plasticity. Hear Res 343:176–190

    Article  PubMed  Google Scholar 

  8. Fröhlich F, Basta D, Strübing I et al (2017) Time course of cell death due to acoustic overstimulation in the mouse medial geniculate body and primary auditory cortex. Noise Health 19:133–139

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fröhlich F, Ernst A, Strübing I et al (2017) Apoptotic mechanisms after repeated noise trauma in the mouse medial geniculate body and primary auditory cortex. Exp Brain Res 235:3673–3682

    Article  PubMed  Google Scholar 

  10. Gröschel M, Götze R, Ernst A et al (2010) Differential impact of temporary and permanent noise-induced hearing loss on neuronal cell density in the mouse central auditory pathway. J Neurotrauma 27:1499–1507

    Article  PubMed  Google Scholar 

  11. Gröschel M, Müller S, Götze R et al (2011) The possible impact of noise-induced Ca2+-dependent activity in the central auditory pathway: a manganese-enhanced MRI study. Neuroimage 57:190–197

    Article  PubMed  Google Scholar 

  12. Gröschel M, Ryll J, Götze R et al (2014) Acute and long-term effects of noise exposure on the neuronal spontaneous activity in cochlear nucleus and inferior colliculus brain slices. Biomed Res Int 2014:909260

    Article  PubMed  PubMed Central  Google Scholar 

  13. House JW, Brackmann DE (1981) Tinnitus: surgical treatment. Ciba Found Symp 85:204–216

    CAS  PubMed  Google Scholar 

  14. Husain FT, Medina RE, Davis CW et al (2011) Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res 1369:74–88

    Article  CAS  PubMed  Google Scholar 

  15. Ito T, Bishop DC, Oliver DL (2015) Functional organization of the local circuit in the inferior colliculus. Anat Sci Int 91:22–34

    Article  Google Scholar 

  16. Kaltenbach JA (2011) Tinnitus: models and mechanisms. Hear Res 276:52–60

    Article  PubMed  Google Scholar 

  17. Kaltenbach JA, Godfrey DA, Neumann JB et al (1998) Changes in spontaneous neural activity in the dorsal cochlear nucleus following exposure to intense sound: relation to threshold shift. Hear Res 124:78–84

    Article  CAS  PubMed  Google Scholar 

  18. Kamke MR, Brown M, Irvine DR (2003) Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions. J Comp Neurol 459:355–367

    Article  PubMed  Google Scholar 

  19. Kandler K (2004) Activity-dependent organization of inhibitory circuits: lessons from the auditory system. Curr Opin Neurobiol 14:96–104

    Article  CAS  PubMed  Google Scholar 

  20. Kim JJ, Gross J, Potashner SJ et al (2004) Fine structure of long-term changes in the cochlear nucleus after acoustic overstimulation: chronic degeneration and new growth of synaptic endings. J Neurosci Res 77:817–828

    Article  CAS  PubMed  Google Scholar 

  21. Meltser I, Canlon B (2010) The expression of mitogen-activated protein kinases and brain-derived neurotrophic factor in inferior colliculi after acoustic trauma. Neurobiol Dis 40:325–330

    Article  CAS  PubMed  Google Scholar 

  22. Meltser I, Tahera Y, Canlon B (2010) Differential activation of mitogen-activated protein kinases and brain-derived neurotrophic factor after temporary or permanent damage to a sensory system. Neuroscience 165:1439–1446

    Article  CAS  PubMed  Google Scholar 

  23. Mulders WH, Robertson D (2009) Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience 164:733–746

    Article  CAS  PubMed  Google Scholar 

  24. Norena AJ, Eggermont JJ (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 183:137–153

    Article  CAS  PubMed  Google Scholar 

  25. Ologe FE, Olajide TG, Nwawolo CC et al (2008) Deterioration of noise-induced hearing loss among bottling factory workers. J Laryngol Otol 122:786–794

    Article  CAS  PubMed  Google Scholar 

  26. Salvi RJ, Saunders SS, Gratton MA et al (1990) Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma. Hear Res 50:245–257

    Article  CAS  PubMed  Google Scholar 

  27. Seki S, Eggermont JJ (2003) Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res 180:28–38

    Article  PubMed  Google Scholar 

  28. Sekiya T, Canlon B, Viberg A et al (2009) Selective vulnerability of adult cochlear nucleus neurons to de-afferentation by mechanical compression. Exp Neurol 218:117–123

    Article  PubMed  Google Scholar 

  29. Wang Y, Manis PB (2008) Short-term synaptic depression and recovery at the mature mammalian endbulb of held synapse in mice. J Neurophysiol 100:1255–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. WHO (2015) World health organization department for management of nuncommunicable diseases – 1.1 billion people at risk of hearing loss. http://www.who.int/mediacentre/news/releases/2015/ear-care/en/. Zugegriffen: 12. Dez 2016

    Google Scholar 

Download references

Danksagung

Gefördert durch die Deutsche Forschungsgemeinschaft DFG (GR 3519/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gröschel.

Ethics declarations

Interessenkonflikt

M. Gröschel, A. Ernst und D. Basta geben an, dass kein Interessenkonflikt besteht.

Alle nationalen Richtlinien zur Haltung und zum Umgang mit Labortieren wurden eingehalten und die notwendigen Zustimmungen der zuständigen Behörden liegen vor.

Additional information

Dr. rer. nat. Moritz Gröschel, Berlin, mit Arbeitsgruppe F. Fröhlich, I. Strübing, A. Ernst, D. Basta, Berlin, hat für das Poster „Zentrale Neurodegeneration nach wiederholter Lärmexposition im auditorischen System der Maus“ auf der Jahrestagung der DGHNO KHC in Erfurt den Posterpreis (Broicher-Preis) 2017/Kategorie „Experimentell: 1. Preis“ erhalten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gröschel, M., Ernst, A. & Basta, D. Lärminduzierte Neurodegeneration der zentralen Hörbahn. HNO 66, 258–264 (2018). https://doi.org/10.1007/s00106-018-0485-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-018-0485-6

Schlüsselwörter

Keywords

Navigation