Skip to main content
Log in

Stammzellen aus Speicheldrüsen

Neue Therapieoption für die postradiogene Xerostomie?

Salivary gland stem cells

Can they restore radiation-induced salivary gland dysfunction?

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Stammzellen wird eine gewichtige Rolle im Rahmen von regenerativer Medizin und Tissue-Engineering beigemessen, da sie spezifische Eigenschaften besitzen, die ihre Verwendung bei diesen Verfahren aussichtsreich erscheinen lässt. Je nach Herkunft zählen hierzu die Differenzierungsfähigkeit in unterschiedliche Zelltypen und die Fähigkeit zur langfristigen Proliferation. Stammzellen wurden bislang aus vielen unterschiedlichen Geweben isoliert. Weil sie in vielen Geweben nur selten vorkommen und die Gewebegewinnung Komorbiditäten verursachen kann, besteht ein großes Interesse an der Identifikation und Charakterisierung weiterer Zellquellen für die Gewinnung von Stammzellen.

Daher wurde in den letzten Jahren auch Speicheldrüsengewebe, zunächst bei Tieren, später auch beim Menschen auf die Anwesenheit von Stammzellen untersucht. Der klinische Hintergrund ist die Xerostomie, die sehr häufig nach einer Strahlentherapie, aber auch nach Radiojodtherapie auftritt.

In der vorliegenden Arbeit wird ein Überblick über die Isolierung und Charakterisierung von Stammzellen aus Speicheldrüsen gegeben und diskutiert, welche Rolle Stammzellen im Rahmen der Erforschung neuer Therapieoptionen für Erkrankungen wie die postradiogene Xerostomie haben werden.

Abstract

Adult stem cells are actively investigated in the fields of regenerative medicine and tissue engineering, as they exhibit specific characteristics that make them promising candidates for cellular therapies. Depending on their tissue of origin these characteristics include long-term proliferation and the capacity to differentiate into various cell types. To date adult stem cells have been isolated from a multitude of tissues. Non-embryogenic adult tissues contain only small numbers of such stem cells and the derivation of such tissues can cause comorbidities. Therefore, there is ongoing interest in the identification and characterisation of novel cell sources for stem cell isolation and characterisation.

Recently, salivary gland tissue has also been explored as a possible source of stem cells, first in animals and later in humans. Such salivary gland-derived stem cells might be useful in the treatment of radiation-induced salivary gland hypofunction, and possibly also in other diseases with loss of acinar cells, such as sequelae of radio iodine treatment or Sjögren’s disease.

In this paper we review the current status of salivary gland stem cell biology and application and discuss the possible role of stem cells in the development of novel therapies for salivary gland dysfunctions such as postradiogenic xerostomia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Avila JL, Grundmann O, Burd R et al (2009) Radiation-induced salivary gland dysfunction results from p53-dependent apoptosis. Int J Radiat Oncol Biol Phys 73:523–529

    CAS  PubMed  Google Scholar 

  2. Beresford JN, Bennett JH, Devlin C et al (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102(Pt 2):341–351

    CAS  PubMed  Google Scholar 

  3. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  4. Chomette G, Auriol M, Vaillant JM et al (1981) Effects of irradiation on the submandibular gland of the rat. An enzyme histochemical and ultrastructural study. Virchows Arch A Pathol Anat Histol 391:291–299

    Article  CAS  PubMed  Google Scholar 

  5. Coppes RP, Zeilstra LJ, Kampinga HH et al (2001) Early to late sparing of radiation damage to the parotid gland by adrenergic and muscarinic receptor agonists. Br J Cancer 85:1055–1063

    Article  CAS  PubMed  Google Scholar 

  6. Croitoru-Lamoury J, Lamoury FM, Zaunders JJ et al (2007) Human mesenchymal stem cells constitutively express chemokines and chemokine receptors that can be upregulated by cytokines, IFN-beta, and copaxone. J Interferon Cytokine Res 27:53–64

    Article  CAS  PubMed  Google Scholar 

  7. David R, Shai E, Aframian DJ et al (2008) Isolation and cultivation of integrin alpha(6)beta(1)-expressing salivary gland graft cells: a model for use with an artificial salivary gland. Tissue Eng Part A 14:331–337

    Article  CAS  PubMed  Google Scholar 

  8. Denny PC, Denny PA (1999) Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland. Anat Rec 254:408–417

    Article  CAS  PubMed  Google Scholar 

  9. Dirix P, Nuyts S, Van den Bogaert W (2006) Radiation-induced xerostomia in patients with head and neck cancer: a literature review. Cancer 107:2525–2534

    Article  PubMed  Google Scholar 

  10. Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20:263–272

    CAS  PubMed  Google Scholar 

  11. Gorjup E, Danner S, Rotter N et al (2009) Glandular tissue from human pancreas and salivary gland yields similar stem cell populations. Eur J Cell Biol 88:409–421

    Article  CAS  PubMed  Google Scholar 

  12. Hisatomi Y, Okumura K, Nakamura K et al (2004) Flow cytometric isolation of endodermal progenitors from mouse salivary gland differentiate into hepatic and pancreatic lineages. Hepatology 39:667–675

    Article  PubMed  Google Scholar 

  13. Huss R (2000) Isolation of primary and immortalized CD34-hematopoietic and mesenchymal stem cells from various sources. Stem Cells 18:1–9

    Article  CAS  PubMed  Google Scholar 

  14. Huss R (2002) Perspectives on the morphology and biology of CD-34-negative stem cells. J Hematother Stem Cell Res 9:783–793

    Article  Google Scholar 

  15. Kishi T, Takao T, Fujita K et al (2006) Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands. Biochem Biophys Res Commun 340:544–552

    Article  CAS  PubMed  Google Scholar 

  16. Konings AW, Coppes RP, Vissink A (2005) On the mechanism of salivary gland radiosensitivity. Int J Radiat Oncol Biol Phys 62:1187–1194

    CAS  PubMed  Google Scholar 

  17. Krampera M, Cosmi L, Angeli R et al (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24:386–398

    Article  CAS  PubMed  Google Scholar 

  18. Lagasse E, Connors H, Al-Dhalimy M et al (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234

    Article  CAS  PubMed  Google Scholar 

  19. Liem IH, Olmos RA, Balm AJ et al (1996) Evidence for early and persistent impairment of salivary gland excretion after irradiation of head and neck tumours. Eur J Nucl Med 23:1485–1490

    Article  CAS  PubMed  Google Scholar 

  20. Lin CY, Lee BS, Liao CC et al (2007) Transdifferentiation of bone marrow stem cells into acinar cells using a double chamber system. J Formos Med Assoc 106:1–7

    Article  PubMed  Google Scholar 

  21. Liu H, Kemeny DM, Heng BC et al (2006) The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. J Immunol 176:2864–2871

    CAS  PubMed  Google Scholar 

  22. Lombaert IM, Wierenga PK, Kok T et al (2006) Mobilization of bone marrow stem cells by granulocyte colony-stimulating factor ameliorates radiation-induced damage to salivary glands. Clin Cancer Res 12:1804–1812

    Article  CAS  PubMed  Google Scholar 

  23. Lombaert IM, Brunsting JF, Wierenga PK et al (2008) Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS ONE 3:e2063

    Article  PubMed  Google Scholar 

  24. Man YG, Ball WD, Marchetti L et al (2001) Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats. Anat Rec 263:202–214

    Article  CAS  PubMed  Google Scholar 

  25. Mandel SJ, Mandel L (2003) Radioactive iodine and the salivary glands. Thyroid 13:265–271

    Article  CAS  PubMed  Google Scholar 

  26. Marks R, Finke J (2006) The impact of stem cell therapy in hematology and oncology. Internist (Berl) 47:467–468, 470–478

    Google Scholar 

  27. Nagler RM (2002) The enigmatic mechanism of irradiation-induced damage to the major salivary glands. Oral Dis 8:141–146

    Article  CAS  PubMed  Google Scholar 

  28. O’Connell AC (2000) Natural history and prevention of radiation injury. Adv Dent Res 14:57–61

    Article  Google Scholar 

  29. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  CAS  PubMed  Google Scholar 

  30. Orlic D, Kajstura J, Chimenti S et al (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98:10344–10349

    Article  CAS  PubMed  Google Scholar 

  31. Peter B, Van Waarde MA, Vissink A et al (1994) Radiation-induced cell proliferation in the parotid and submandibular glands of the rat. Radiat Res 140:257–265

    Article  CAS  PubMed  Google Scholar 

  32. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  CAS  PubMed  Google Scholar 

  33. Redman RS (2008) On approaches to the functional restoration of salivary glands damaged by radiation therapy for head and neck cancer, with a review of related aspects of salivary gland morphology and development. Biotech Histochem 83:103–130

    Article  CAS  PubMed  Google Scholar 

  34. Rolf HJ, Kierdorf U, Kierdorf H et al (2008) Localization and characterization of STRO-1 cells in the deer pedicle and regenerating antler. PLoS One 3:e2064

    Article  PubMed  Google Scholar 

  35. Rotter N, Oder J, Schlenke P et al (2008) Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev 17:509–518

    Article  CAS  PubMed  Google Scholar 

  36. Seifert GMA, Haubrich J, Chilla R (1984) In: Chilla R (Hrsg) Speicheldrüsenkrankheiten. Thieme, Stuttgart, S 140–146

  37. Stagg J (2007) Immune regulation by mesenchymal stem cells: two sides to the coin. Tissue Antigens 69:1–9

    Article  CAS  PubMed  Google Scholar 

  38. Thalmeier K, Meissner P, Moosmann S et al (2001) Mesenchymal differentiation and organ distribution of established human stromal cell lines in NOD/SCID mice. Acta Haematol 105:159–165

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Die Untersuchungen wurden durch die Novartis-Stiftung für Therapeutische Forschung und durch die German Israel Foundation unterstützt.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rotter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotter, N., Schwarz, S., Jakob, M. et al. Stammzellen aus Speicheldrüsen. HNO 58, 556–563 (2010). https://doi.org/10.1007/s00106-010-2111-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-010-2111-0

Schlüsselwörter

Keywords

Navigation