Skip to main content
Log in

Ein Blick in die Nachbardisziplin: eHealth in der Onkologie

A look into the neighboring discipline: eHealth in oncology

  • Leitthema
  • Published:
Die Chirurgie Aims and scope Submit manuscript

Zusammenfassung

Die Digitalisierung verändert das gesamte Gesundheitssystem dramatisch. Schlagworte wie künstliche Intelligenz, elektronische Patientenakte (ePA), elektronisches Rezept (eRp), Telemedizin, Wearables, Augmented Reality oder digitale Gesundheitsanwendungen (DiGA) stehen für die bereits stattfindende digitale Transformation. Digital wird real! Der folgende Überblick skizziert den Stand der Forschung und Entwicklung, aktuelle Planungen und bereits laufende Nutzungen digitaler Tools in der Onkologie in der ersten Hälfte des Jahres 2024. Die Möglichkeiten der Nutzung von künstlicher Intelligenz und der Einsatz von DiGAs in der Onkologie werden in dieser Übersicht entsprechend ihrem Entwicklungsstand etwas ausführlicher dargestellt, da sie in der Onkologie bereits einen erkennbaren Nutzen zeigen.

Abstract

Digitalization is dramatically changing the entire healthcare system. Keywords such as artificial intelligence, electronic patient files (ePA), electronic prescriptions (eRp), telemedicine, wearables, augmented reality and digital health applications (DiGA) represent the digital transformation that is already taking place. Digital becomes real! This article outlines the state of research and development, current plans and ongoing uses of digital tools in oncology in the first half of 2024. The possibilities for using artificial intelligence and the use of DiGAs in oncology are presented in more detail in this overview according to their stage of development as they already show a noticeable benefit in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Cellina M et al (2022) Artificial intelligence in lung cancer imaging: unfolding the future. Diagnostics 12(11):2644. https://doi.org/10.3390/diagnostics12112644

    Article  PubMed  PubMed Central  Google Scholar 

  2. Esteva A, Kuprel B, Novoa R et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118. https://doi.org/10.1038/nature21056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen S et al (2023) Deep learning-based pathology signature could reveal lymph node status and act as a novel prognostic marker across multiple cancer types. Br J Cancer 129(1):46–53. https://doi.org/10.1038/s41416-023-02262-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bulten W, Kartasalo K, Chen P‑HC et al (2022) Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nat Med 28:154–163. https://doi.org/10.1038/s41591-021-01620-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nam JG et al (2023) AI improves nodule detection on chest radiographs in a health screening population: a randomized controlled trial. Radiology. https://doi.org/10.1148/radiol.221894

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chaunzwa TL et al (2021) Deep learning classification of lung cancer histology using CT images. Sci Rep 11:5471. https://doi.org/10.1038/s41598-021-84630-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baek S, He Y, Allen BG et al (2019) Deep segmentation networks predict survival of non-small cell lung cancer. Sci Rep 9:17286. https://doi.org/10.1038/s41598-019-53461-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robles-Medranda C et al (2023) Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model. Endoscopy 55(8):719–727. https://doi.org/10.1055/a-2034-3803

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yamada M, Saito Y, Imaoka H et al (2019) Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Sci Rep 9:14465. https://doi.org/10.1038/s41598-019-50567-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saldanha OL, Loeffler CML, Niehues JM et al (2023) Self-supervised attention-based deep learning for pan-cancer mutation prediction from histopathology. Npj Precis Onc 7:35. https://doi.org/10.1038/s41698-023-00365-0

    Article  Google Scholar 

  11. Pao JJ, Biggs M, Duncan D et al (2023) Predicting EGFR mutational status from pathology images using a real-world dataset. Sci Rep 13:4404. https://doi.org/10.1038/s41598-023-31284-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jeppesen M et al (2023) Accurate prediction of protein assembly structure by combining AlphaFold and symmetrical docking. Nat Commun 14(1):8283. https://doi.org/10.1038/s41467-023-43681-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cai Y et al (2023) Artificial intelligence applied in neoantigen identification facilitates personalized cancer immunotherapy. Front Oncol 12:1054231. https://doi.org/10.3389/fonc.2022.1054231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jumper J et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baek M et al (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin Z et al (2023) Evolutionary-scale prediction of atomic level protein structure with a language model. Science 379:1123–1130

    Article  CAS  PubMed  Google Scholar 

  17. Manz CR et al (2023) Long-term effect of machine learning–triggered behavioral nudges on serious illness conversations and end-of-life outcomes among patients with cancer. JAMA Oncol 9(3):414–418. https://doi.org/10.1001/jamaoncol.2022.6303

    Article  PubMed  PubMed Central  Google Scholar 

  18. Placido D et al (2023) A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nat Med 29(5):1113–1122. https://doi.org/10.1038/s41591-023-02332-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garriga R et al (2022) Machine learning model to predict mental health crises from electronic health records. Nat Med 28(6):1240–1248. https://doi.org/10.1038/s41591-022-01811-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ayers JW et al (2023) Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern Med 183(6):589–596. https://doi.org/10.1001/jamainternmed.2023.1838

    Article  PubMed  PubMed Central  Google Scholar 

  21. Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies. https://www.thelancet.com/journals/landig/article/PIIS2589-7500(22)00252-7/fulltext

  22. Govindaraj R et al (2023) Assessing patient-reported outcomes in routine cancer clinical care using electronic administration and telehealth technologies: realist synthesis of potential mechanisms for improving health outcomes. J Med Internet Res 25:e48483. https://doi.org/10.2196/48483

    Article  PubMed  PubMed Central  Google Scholar 

  23. Klier K et al (2023) Corrected QT interval (QTc) diagnostic app for the oncological routine: development study. JMIR Cardio 7:e48096. https://doi.org/10.2196/48096

    Article  PubMed  PubMed Central  Google Scholar 

  24. Harbeck N et al (2023) Significantly longer time to deterioration of quality of life due to CANKADO PRO-React eHealth support in HR+ HER2-metastatic breast cancer patients receiving palbociclib and endocrine therapy: primary outcome analysis of the multicenter randomized AGO‑B WSG PreCycle trial. Ann Oncol 34(8):660–669. https://doi.org/10.1016/j.annonc.2023.05.003

    Article  CAS  PubMed  Google Scholar 

  25. Schunn FA et al (2023) Oncologic treatment support via a dedicated mobile app: a prospective feasibility evaluation (OPTIMISE-1). Strahlenther Onkol. https://doi.org/10.1007/s00066-023-02166-7

    Article  PubMed  Google Scholar 

  26. Changing cancer mindsets: a randomized controlled feasibility and efficacy trial. https://pubmed.ncbi.nlm.nih.gov/37529924/

  27. Kaidar-Person O et al (2023) Evaluating the ability of an artificial-intelligence cloud-based platform designed to provide information prior to locoregional therapy for breast cancer in improving patient’s satisfaction with therapy: the CINDERELLA trial. PLoS ONE 18(8):e289365. https://doi.org/10.1371/journal.pone.0289365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Adam R et al (2021) Can-pain—a digital intervention to optimise cancer pain control in the community: development and feasibility testing. Support Care Cancer 29(2):759–769. https://doi.org/10.1007/s00520-020-05510-0

    Article  PubMed  Google Scholar 

  29. Digital therapeutic to improve cancer-related well-being: a pilot randomized controlled trial. https://pubmed.ncbi.nlm.nih.gov/37321673/

  30. Trained artificial intelligence (AI) for predicting treatment termination based on patient observations in advanced breast cancer. https://aacrjournals.org/cancerres/article/83/5_Supplement/P6-03-08/718143/Abstract-P6-03-08-Trained-Artificial-Intelligence

  31. One million cancer treatment months (OMCAT). https://clinicaltrials.gov/study/NCT04531995

  32. Optimization of a technology-supported physical activity promotion intervention for breast cancer survivors: results from Fit2Thrive. https://pubmed.ncbi.nlm.nih.gov/34812521/

  33. Saesen R et al (2023) Defining the role of real-world data in cancer clinical research: the position of the European organisation for research and treatment of cancer. Eur J Cancer 186:52–61. https://doi.org/10.1016/j.ejca.2023.03.013

    Article  PubMed  Google Scholar 

  34. www.pink-brustkrebs.de

  35. Spahrkäs SS et al (2020) Beating cancer-related fatigue with the Untire mobile app: results from a waiting-list randomized controlled trial. Psychooncology. https://doi.org/10.1002/pon.5492

    Article  PubMed  PubMed Central  Google Scholar 

  36. www.optimune.de

  37. www.onqo.de

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Overkamp.

Ethics declarations

Interessenkonflikt

F. Overkamp: CEO OncoConsult Overkamp GmbH I Berlin; CEO onkowissen.de GmbH I Würzburg.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

I. Gockel, Leipzig

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Overkamp, F. Ein Blick in die Nachbardisziplin: eHealth in der Onkologie. Chirurgie 95, 451–458 (2024). https://doi.org/10.1007/s00104-024-02089-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-024-02089-8

Schlüsselwörter

Keywords

Navigation