Skip to main content
Log in

Therapeutische Hypothermie und Säure-Basen-Management

Therapeutic hypothermia and acid-base management

  • Medizin aktuell
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die moderate Hypothermie hat in der letzten Dekade als Therapieoption bei akut neurologischen Krankheitsbildern eine Renaissance erfahren. Bei eindeutigen Therapieerfolgen ist es allerdings ein personal- und kostenintensives Therapieverfahren, das für eine erfolgreiche Anwendung umfangreiche physiologische Kenntnisse und klinische Erfahrung verlangt. Gerade das Erkennen und Beherrschen von Nebeneffekten, die mit fallender Temperatur und steigender Kühldauer zunehmen, entscheiden oftmals über den endgültigen Therapieerfolg.

Eine weitere Besonderheit liegt in der Adaptierung von Homöostaseparametern an eine grundlegend pathophysiologische Temperaturkonstellation. Dies gilt insbesondere für die Steuerung des Säure-Basen-Haushalts. Grundsätzlich kommen dabei zwei Therapieregime zur Anwendung, die sich dahingehend unterscheiden, dass unter Hypothermie in einem Fall der pH (pH-stat) oder aber der H+/OH-Quotient (α-stat) konstant bleibt. Beim Fehlen vergleichender klinischer prospektiver Daten hinsichtlich eines neurologischen Gesamtergebnisses erscheint es unter evidenzbasierten Kriterien schwierig, die beiden Regime einer klinischen Wertung zu unterziehen. Allerdings sprechen sowohl experimentelle Daten als auch pathophysiologische Überlegungen für ein entsprechend differenziertes Vorgehen beim Einsatz der therapeutischen Hypothermie. Eine endgültige Bewertung kann allerdings erst beim Vorliegen prospektiver klinischer Studien vorgenommen werden.

Abstract

Moderate hypothermia is being increasingly advocated for acute neurological clinical situations. In case of proved clinical success, however, it is relatively time consuming and requires personal and structural resources. In addition, profound knowledge and a sound understanding of the physiology of hypothermia are necessary prerequisites. In particular, the variety of untoward effects, which increase with decreasing temperature, underline the need for specific diagnostic and therapeutic skills. A further challenge is associated with the adaptation of the parameters of homoeostasis to a basically altered temperature. Among these, management of acid-base balance is a managerial cornerstone. In principle, two different regimens may be used, i.e. the pH-stat and the α-stat regimes. Applying pH-stat during hypothermia means keeping the pH constant, whereas the H+/OH quotient is held constant when relying on the α-stat regime. Because of the lack of prospective clinical data any comparative evaluation of the two alternatives actually remains a matter of speculation. However, experimental data as well as physiological considerations may support an illness-oriented differentiated approach (e.g. increased cerebral pressure vs. cardiac arrest vs. stroke). Prospective studies are required to allow an evidence-based and substantiated clinical decision regarding the management of pCO2 and pH during therapeutic hypothermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Mackowiak PA, Wassermann SS, Levine MM (1992) A critical appraisal of 98,6°F; the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. JAMA 268: 1578–1580

    Article  PubMed  Google Scholar 

  2. Brüx A, Girbes ARJ, Polderman KH (2005) Kontrollierte milde und moderate Hypothermie. Anaesthesist 54: 225–244

    Article  PubMed  Google Scholar 

  3. Mellergard P, Nordström C-H (1991) Intracerebral temperature in neurosurgical patients. Neurosurgery 28: 709–713

    Article  PubMed  Google Scholar 

  4. Singer D, Hellige G (1991) Vorbereitung und Steuerung der extrakorporalen Zirkulation aus physiologischer Sicht. In: Preuße CJ, Schulte HD (Hrsg) Extrakorporale Zirkulation – Heute. Steinkopff, Darmstadt, S 1–29

  5. Polderman KH (2004) Application of therapeutic hypothermia in the ICU. Opportunities and pitfalls of a promising treatment modality. Part 1: Indications and evidence. Intensive Care Med 30: 556–575

    Article  PubMed  Google Scholar 

  6. The Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346: 549–556

    Article  PubMed  Google Scholar 

  7. Bernard SA, Gray TW, Buist MD et al. (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346: 557–563

    Article  PubMed  Google Scholar 

  8. European Resuscitation Council (2005) Guidelines for resuscitation 2005. Resuscitation 67: 1–189

    Article  Google Scholar 

  9. Shankaran S, Laptook AR, Ehrenkranz RA et al. (2005) Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353: 1574–1584

    Article  PubMed  Google Scholar 

  10. Clifton GL, Miller ER, Choi SC et al. (2001) Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 344: 556–563

    Article  PubMed  Google Scholar 

  11. Polderman KH, Joe RTT, Peerdeman SM et al. (2002) Effects of therapeutic hypothermia on intracranial pressure and outcome in patients with severe head injury. Intensive Care Med 28: 1563–1573

    Article  PubMed  Google Scholar 

  12. McIntyre LA, Fergusson DA, Hébert PC et al. (2003) Prolonged therapeutic hypothermia after traumatic brain injury in adults. JAMA 289: 2992–2999

    Article  PubMed  Google Scholar 

  13. Todd MM, Hindman BJ, Clarke WR, Torner JC (2005) Mild intraoperative hypothermia during surgery for intracranial aneurysm. N Engl J Med 352: 135–145

    Article  PubMed  Google Scholar 

  14. Polderman KH (2004) Application of therapeutic hypothermia in the intensive care unit. Opportunities and pitfalls of a promising treatment modality. Part 2: Practical aspects and side effects. Intensive Care Med 30: 757–769

    Article  PubMed  Google Scholar 

  15. Bacher A (2005) Effects of body temperature on blood gases. Intensive Care Med 31: 24–27

    Article  PubMed  Google Scholar 

  16. MitchenfelderJD, Theye RA (1968) Hypothermia: effect on canine brain and whole-body metabolism. Anesthesiology 29: 1107–1112

    PubMed  Google Scholar 

  17. Rosenthal TB (1948) The effect of temperature on the pH of blood and plasma in vitro. J Biol Chem 173: 25–30

    Google Scholar 

  18. Jabbour PM, Issam AA, Huddle D (2004) Hemorrhagic cerebrovascular disease. In: Layon AJ, Gabrielli A, Friedmann WA (eds) Textbook of neurointensive care. Saunders, Philadelphia, pp 155–160

  19. Coles JP, Fryer TD, Coleman MR et al. (2007) Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med 35: 568–578

    Article  PubMed  Google Scholar 

  20. Coles JP, Minhas PS, Fryer TD et al. (2002) Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates. Crit Care Med 30: 1950–1959

    Article  PubMed  Google Scholar 

  21. Roberts I, Schierhout G (2003) Hyperventilation therapy for acute traumatic brain injury (Cochrane review). The Cochrane Library 2003, Update software, Oxford

  22. Kollmar R, Frietsch T, Georgiadis D et al. (2002) Early effects of acid-base management during hypothermia on cerebral infarct volume, edema, and cerebral blood flow in acute focal cerebral ischemia in rats. Anesthesiology 97: 868–874

    Article  PubMed  Google Scholar 

  23. Duebener LF, Hagino I, Sakamoto T et al. (2002) Effects of pH management during deep hypothermic bypass on cerebral microcirculation: Alpha-stat versus pH-stat. Circulation 106: 103–108

    Google Scholar 

  24. Murkin JM, Farrar JK, Tweed W et al. (1987) Cerebral autoregulation and flow/metabolism coupling during hypothermic cardiopulmonary bypass: the influence of PaCO2. Anesth Analg 66: 825–832

    PubMed  Google Scholar 

  25. Murkin JM (1988) Cerebral hyperperfusion during cardiopulmonary bypass: the influence of PaCO2, brain injury and protection during heart surgery. In: Hilberman M (ed). Martinus Nijhoff, Boston, pp 47–66

  26. Nunn JF (1966) Oxygen tension temperature factor. Anesthesiology 27: 204

    Google Scholar 

  27. Kelman GR, Nunn JF (1966) Nomograms for correction of blood PO2, PCO2, pH, and base excess for time and temperature. J Appl Physiol 21: 1484–1490

    PubMed  Google Scholar 

  28. Andritsch RF, Muravchick S, Gold MI (1981) Temperature correction of arterial blood gas parameters: a comparative review of methodology. Anesthesiology 55: 311–316

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bach.

Additional information

In Dankbarkeit und Freundschaft Herrn Prof. Dr. med. Rolf Zander zum 65. Geburtstag und zur Pensionierung gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bach, F., Mertzlufft, F. Therapeutische Hypothermie und Säure-Basen-Management. Anaesthesist 56, 366–370 (2007). https://doi.org/10.1007/s00101-007-1158-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-007-1158-0

Schlüsselwörter

Keywords

Navigation