Skip to main content

Advertisement

Log in

Effects on the ubiquitin proteasome system after closed soft-tissue trauma in rat skeletal muscle

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Previous studies have suggested that an increased catabolic stage of skeletal muscle in pathological situations is mainly a reflection of ubiquitin–proteasome system-controlled proteolysis. The proteolytic mechanisms that occur after local muscle trauma are poorly defined. We investigated the effects of closed soft-tissue trauma on ubiquitin–proteasome dependent protein breakdown in rats (n = 25). The enzymatic activities of the ubiquitination and proteasome reactions were both reduced (p < 0.05) immediately after contusion of the hind limb musculus extensor digitorum longus. The same effect was observed in extracts of lung tissue from the injured animals. Cellular levels of free and protein-conjugated ubiquitin were significantly elevated upon decreased proteolytic activity. Our data support an early-state anti-proteolytic role of the ubiquitin–proteasome pathway after local injury. This further implies that there is a yet-to-be elucidated complex regulatory mechanism of muscle regeneration that involves various proteolytic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Medina R, Wing SS, Goldberg AL. Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy. Biochem J. 1995;307(Pt 3):631–7.

    PubMed  CAS  Google Scholar 

  2. Song XM, Ryder JW, Kawano Y, Chibalin AV, Krook A, Zierath JR. Muscle fiber type specificity in insulin signal transduction. Am J Physiol. 1999;277:R1690–6.

    PubMed  CAS  Google Scholar 

  3. Goldberg AL, Tischler M, DeMartino G, Griffin G. Hormonal regulation of protein degradation and synthesis in skeletal muscle. Fed Proc. 1980;39:31–6.

    PubMed  CAS  Google Scholar 

  4. Li JB, Goldberg AL. Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles. Am J Physiol. 1976;231:441–8.

    PubMed  CAS  Google Scholar 

  5. Reid MB. Response of the ubiquitin–proteasome pathway to changes in muscle activity. Am J Physiol Regul Integr Comp Physiol. 2005;288:R1423–31.

    Article  PubMed  CAS  Google Scholar 

  6. Sugden PH, Fuller SJ. Regulation of protein turnover in skeletal and cardiac muscle. Biochem J. 1991;273(Pt 1):21–37.

    PubMed  CAS  Google Scholar 

  7. Lecker SH, Solomon V, Mitch WE, Goldberg AL. Muscle protein breakdown and the critical role of the ubiquitin–proteasome pathway in normal and disease states. J Nutr. 1999;129:227S–37S.

    PubMed  CAS  Google Scholar 

  8. Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin–proteasome pathway. N Engl J Med. 1996;335:1897–905.

    Article  PubMed  CAS  Google Scholar 

  9. Hasselgren PO, Menconi MJ, Fareed MU, Yang H, Wei W, Evenson A. Novel aspects on the regulation of muscle wasting in sepsis. Int J Biochem Cell Biol. 2005;37:2156–68.

    Article  PubMed  CAS  Google Scholar 

  10. Hasselgren PO, Wray C, Mammen J. Molecular regulation of muscle cachexia: it may be more than the proteasome. Biochem Biophys Res Commun. 2002;290:1–10.

    Article  PubMed  CAS  Google Scholar 

  11. Khal J, Wyke SM, Russell ST, Hine AV, Tisdale MJ. Expression of the ubiquitin–proteasome pathway and muscle loss in experimental cancer cachexia. Br J Cancer. 2005;93:774–80.

    Article  PubMed  CAS  Google Scholar 

  12. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004;18:39–51.

    Article  PubMed  CAS  Google Scholar 

  13. Voisin L, Breuille D, Combaret L, Pouyet C, Taillandier D, Aurousseau E, et al. Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca2+-activated, and ubiquitin–proteasome proteolytic pathways. J Clin Invest. 1996;97:1610–7.

    Article  PubMed  CAS  Google Scholar 

  14. Tisdale MJ. The ubiquitin–proteasome pathway as a therapeutic target for muscle wasting. J Support Oncol. 2005;3:209–17.

    PubMed  CAS  Google Scholar 

  15. Attaix D, Ventadour S, Codran A, Bechet D, Taillandier D, Combaret L. The ubiquitin–proteasome system and skeletal muscle wasting. Essays Biochem. 2005;41:173–86.

    Article  PubMed  CAS  Google Scholar 

  16. Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. J Am Soc Nephrol. 2006;17:1807–19.

    Article  PubMed  CAS  Google Scholar 

  17. Larbaud D, Balage M, Taillandier D, Combaret L, Grizard J, Attaix D. Differential regulation of the lysosomal, Ca2+-dependent and ubiquitin/proteasome-dependent proteolytic pathways in fast-twitch and slow-twitch rat muscle following hyperinsulinaemia. Clin Sci (Lond). 2001;101:551–8.

    Article  CAS  Google Scholar 

  18. Lee SW, Dai G, Hu Z, Wang X, Du J, Mitch WE. Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin–proteasome systems by phosphatidylinositol 3 kinase. J Am Soc Nephrol. 2004;15:1537–45.

    Article  PubMed  CAS  Google Scholar 

  19. Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods. 1991;39:253–62.

    Article  PubMed  CAS  Google Scholar 

  20. Schaser KD, Vollmar B, Menger MD, Schewior L, Kroppenstedt SN, Raschke M, et al. In vivo analysis of microcirculation following closed soft-tissue injury. J Orthop Res. 1999;17:678–85.

    Article  PubMed  CAS  Google Scholar 

  21. Tscherne H, Oestern HJ. A new classification of soft-tissue damage in open and closed fractures (author’s transl). Unfallheilkunde. 1982;85:111–5.

    PubMed  CAS  Google Scholar 

  22. Ponelies N, Hirsch T, Krehmeier U, Denz C, Patel MB, Majetschak M. Cytosolic ubiquitin and ubiquitylation rates in human peripheral blood mononuclear cells during sepsis. Shock. 2005;24:20–5.

    Article  PubMed  CAS  Google Scholar 

  23. Majetschak M, Ponelies N, Hirsch T. Targeting the monocytic ubiquitin system with extracellular ubiquitin. Immunol Cell Biol. 2006;84:59–65.

    Article  PubMed  CAS  Google Scholar 

  24. Schaser KD, Bail HJ, Schewior L, Stover JF, Melcher I, Haas NP, Mittlmeier T. Acute effects of N-acetylcysteine on skeletal muscle microcirculation following closed soft tissue trauma in rats. J Orthop Res. 2005;23:231–41.

    Article  PubMed  CAS  Google Scholar 

  25. Kessler BM, Tortorella D, Altun M, Kisselev AF, Fiebiger E, Hekking BG, et al. Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic beta-subunits. Chem Biol. 2001;8:913–29.

    Article  PubMed  CAS  Google Scholar 

  26. Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA. 1999;96:10403–8.

    Article  PubMed  CAS  Google Scholar 

  27. Hobler SC, Williams A, Fischer D, Wang JJ, Sun X, Fischer JE, et al. Activity and expression of the 20S proteasome are increased in skeletal muscle during sepsis. Am J Physiol. 1999;277:R434–40.

    PubMed  CAS  Google Scholar 

  28. Mitch WE, Bailey JL, Wang X, Jurkovitz C, Newby D, Price SR. Evaluation of signals activating ubiquitin–proteasome proteolysis in a model of muscle wasting. Am J Physiol. 1999;276:C1132–8.

    PubMed  CAS  Google Scholar 

  29. Jagoe RT, Goldberg AL. What do we really know about the ubiquitin–proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care. 2001;4:183–90.

    Article  PubMed  CAS  Google Scholar 

  30. Mansoor O, Beaufrere B, Boirie Y, Ralliere C, Taillandier D, Aurousseau E, et al. Increased mRNA levels for components of the lysosomal, Ca2+-activated, and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients. Proc Natl Acad Sci USA. 1996;93:2714–8.

    Article  PubMed  CAS  Google Scholar 

  31. Fang CH, Li BG, James JH, King JK, Evenson AR, Warden GD, Hasselgren PO. Protein breakdown in muscle from burned rats is blocked by insulin-like growth factor i and glycogen synthase kinase-3β inhibitors. Endocrinology. 2005;146:3141–9.

    Article  PubMed  CAS  Google Scholar 

  32. Seiffert M, Gosenca D, Ponelies N, Ising N, Patel MB, Obertacke U, Majetschak M. Regulation of the ubiquitin proteasome system in mechanically injured human skeletal muscle. Physiol Res. 2007;56:227–33.

    PubMed  CAS  Google Scholar 

  33. Fisher BD, Baracos VE, Shnitka TK, Mendryk SW, Reid DC. Ultrastructural events following acute muscle trauma. Med Sci Sports Exerc. 1990;22:185–93.

    PubMed  CAS  Google Scholar 

  34. Fisher BD, Rathgaber M. An overview of muscle regeneration following acute injury. J Phys Ther Sci. 2006;18:57–66.

    Article  Google Scholar 

  35. Gierer P, Vollmar B, Schaser KD, Andreas C, Gradl G, Mittlmeier T. Efficiency of small-volume resuscitation in restoration of disturbed skeletal muscle microcirculation after soft-tissue trauma and haemorrhagic shock. Langenbecks Arch Surg. 2004;389:40–5.

    Article  PubMed  Google Scholar 

  36. Tjader I, Essen P, Garlick PJ, McMnurlan MA, Rooyackers O, Wernerman J. Impact of surgical trauma on human skeletal muscle protein synthesis. Clin Sci (Lond). 2004;107:601–7.

    Article  Google Scholar 

  37. Luo JL, Hammarqvist F, Andersson K, Wernerman J. Surgical trauma decreases glutathione synthetic capacity in human skeletal muscle tissue. Am J Physiol. 1998;275:E359–65.

    PubMed  CAS  Google Scholar 

  38. Farges MC, Balcerzak D, Fisher BD, Attaix D, Bechet D, Ferrara M, Baracos VE. Increased muscle proteolysis after local trauma mainly reflects macrophage-associated lysosomal proteolysis. Am J Physiol Endocrinol Metab. 2002;282:E326–35.

    PubMed  CAS  Google Scholar 

  39. Tawa NE Jr, Odessey R, Goldberg AL. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles. J Clin Invest. 1997;100:197–203.

    Article  PubMed  CAS  Google Scholar 

  40. Zhu Q, Wani G, Wang QE, El-mahdy M, Snapka RM, Wani AA. Deubiquitination by proteasome is coordinated with substrate translocation for proteolysis in vivo. Exp Cell Res. 2005;307:436–51.

    Article  PubMed  CAS  Google Scholar 

  41. Kim JH, Park KC, Chung SS, Bang O, Chung CH. Deubiquitinating enzymes as cellular regulators. J Biochem (Tokyo). 2003;134:9–18.

    Article  CAS  Google Scholar 

  42. Combaret L, Adegoke OA, Bedard N, Baracos V, Attaix D, Wing SS. USP19 is a ubiquitin-specific protease regulated in rat skeletal muscle during catabolic states. Am J Physiol Endocrinol Metab. 2005;288:E693–700.

    Article  PubMed  CAS  Google Scholar 

  43. Fuster G, Busquets S, Almendro V, Lopez-Soriano FJ, Argiles JM. Antiproteolytic effects of plasma from hibernating bears: a new approach for muscle wasting therapy? Clin Nutr. 2007;26:658–61.

    Article  PubMed  CAS  Google Scholar 

  44. Fielding RA, Manfredi TJ, Ding W, Fiatarone MA, Evans WJ, Cannon JG. Acute phase response in exercise. III. Neutrophil and IL-1 beta accumulation in skeletal muscle. Am J Physiol. 1993;265:R166–72.

    PubMed  CAS  Google Scholar 

  45. Tidball JG, Berchenko E, Frenette J. Macrophage invasion does not contribute to muscle membrane injury during inflammation. J Leukoc Biol. 1999;65:492–8.

    PubMed  CAS  Google Scholar 

  46. Gates C, Huard J. Management of skeletal muscle injuries in military personnel. Oper Tech Sports Med. 2005;13:247–56.

    Article  Google Scholar 

  47. Charge SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84:209–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Anja Bistron and Andreas Klusch for excellent technical help. This research was supported by the Deutsche Forschungsgemeinschaft (DFG, priority program SPP1151).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ponelies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponelies, N., Gosenca, D., Ising, N. et al. Effects on the ubiquitin proteasome system after closed soft-tissue trauma in rat skeletal muscle. Eur J Trauma Emerg Surg 37, 645–654 (2011). https://doi.org/10.1007/s00068-011-0083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-011-0083-8

Keywords

Navigation