Skip to main content

Advertisement

Log in

Role of resting-state functional MRI in detecting brain functional changes following radiotherapy for head and neck cancer: a systematic review and meta-analysis

  • Review Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Increasing evidence implicates changes in brain function following radiotherapy for head and neck cancer as precursors for brain dysfunction. These changes may thus be used as biomarkers for early detection. This review aimed to determine the role of resting-state functional magnetic resonance imaging (rs-fMRI) in detecting brain functional changes.

Methods

A systematic search was performed in the PubMed, Scopus, and Web of Science (WoS) databases in June 2022. Patients with head and neck cancer treated with radiotherapy and periodic rs-fMRI assessments were included. A meta-analysis was performed to determine the potential of rs-fMRI for detecting brain changes.

Results

Ten studies with a total of 513 subjects (head and neck cancer patients, n = 437; healthy controls, n = 76) were included. A significance of rs-fMRI for detecting brain changes in the temporal and frontal lobes, cingulate cortex, and cuneus was demonstrated in most studies. These changes were reported to be associated with dose (6/10 studies) and latency (4/10 studies). A strong effect size (r = 0.71, p < 0.001) between rs-fMRI and brain changes was also reported, suggesting rs-fMRI’s capability for monitoring brain alterations.

Conclusion

Resting-state functional MRI is a promising tool for detecting brain functional changes following head and neck radiotherapy. These changes are correlated with latency and prescription dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li Y, Huang X, Jiang J et al (2018) Clinical variables for prediction of the therapeutic effects of bevacizumab monotherapy in nasopharyngeal carcinoma patients with radiation-induced brain necrosis. Int J Radiat Oncol Biol Phys 100:621–629. https://doi.org/10.1016/j.ijrobp.2017.11.023

    Article  CAS  PubMed  Google Scholar 

  2. Stone JB, DeAngelis LM (2016) Cancer-treatment-induced neurotoxicity—focus on newer treatments. Nat Rev Clin Oncol 13:92–105. https://doi.org/10.1038/nrclinonc.2015.152

    Article  CAS  PubMed  Google Scholar 

  3. Chen J, Dassarath M, Yin Z et al (2011) Radiation induced temporal lobe necrosis in patients with nasopharyngeal carcinoma: a review of new avenues in its management. Radiat Oncol 6:128

    Article  PubMed Central  PubMed  Google Scholar 

  4. Ma Q, Wu D, Zeng LL et al (2016) Radiation-induced functional connectivity alterations in nasopharyngeal carcinoma patients with radiotherapy. Medicine 95:e4275. https://doi.org/10.1097/MD.0000000000004275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ding Z, Zhang H, Lv X et al (2018) Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction. Hum Brain Mapp 39:407–427

    Article  PubMed  Google Scholar 

  6. Soussain C, Ricard D, Fike JR et al (2009) CNS complications of radiotherapy and chemotherapy. Lancet 374(9701):1639–1651. https://doi.org/10.1016/S0140-6736(09)61299-X

    Article  CAS  PubMed  Google Scholar 

  7. Karunamuni R, Bartsch H, White NS et al (2016) Dose-dependent cortical thinning after partial brain irradiation in high-grade glioma. Int J Radiat Oncol Biol Phys 94(2):297–304. https://doi.org/10.1016/j.ijrobp.2015.10.026

    Article  PubMed  Google Scholar 

  8. Seibert TM, Karunamuni R, Bartsch H et al (2017) Radiation dose-dependent hippocampal atrophy detected with longitudinal volumetric magnetic resonance imaging. Int J Radiat Oncol Biol Phys 97(2):263–269. https://doi.org/10.1016/j.ijrobp.2016.10.035

    Article  PubMed  Google Scholar 

  9. Makale MT, McDonald CR, Hattangadi-Gluth JA et al (2017) Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol 13(1):52–64. https://doi.org/10.1038/nrneurol.2016.185

    Article  CAS  PubMed  Google Scholar 

  10. Gondi V, Tome WA, Mehta MP (2010) Why avoid the hippocampus? A comprehensive review. Radiother Oncol 97:370–376

    Article  PubMed Central  PubMed  Google Scholar 

  11. Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  12. Zhang D, Raichle ME (2010) Disease and the brain’s dark energy. Nat Rev Neurol 6(1):15–28. https://doi.org/10.1038/nrneurol.2009.198

    Article  PubMed  Google Scholar 

  13. Korgaonkar MS, Ram K, Williams LM et al (2014) Establishing the resting state default mode network derived from functional magnetic resonanceimaging tasks as an endophenotype: a twins study. Hum Brain Mapp 35:3893–3902

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lv X, He H, Yang Y et al (2018) Radiation-induced hippocampal atrophy in patients with nasopharyngeal carcinoma early after radiotherapy: a longitudinal MR-based hippocampal subfield analysis. Brain Imaging Behav. https://doi.org/10.1007/s11682-018-9931-z

    Article  PubMed Central  PubMed  Google Scholar 

  15. Yang Y, Lin X, Li J et al (2019) Aberrant brain activity at early delay stage post-radiotherapy as a biomarker for predicting neurocognitive dysfunction late-delayed in patients with nasopharyngeal carcinoma. Front Neurol 10:752. https://doi.org/10.3389/fneur.2019.00752

    Article  PubMed Central  PubMed  Google Scholar 

  16. Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853. https://doi.org/10.1073/pnas.0601417103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zang YF, He Y, Zhu CZ et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83–91

    Article  PubMed  Google Scholar 

  18. Goncalves SI, de Munck JC, Pouwels PJ et al (2006) Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability. Neuroimage 30:203–213

    Article  CAS  PubMed  Google Scholar 

  19. Zang Y, Jiang T, Lu Y et al (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22:394–400. https://doi.org/10.1016/j.neuroimage.2003.12.030

    Article  PubMed  Google Scholar 

  20. Zuo XN, Xing XX (2014) Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav Rev 45:100–118. https://doi.org/10.1016/j.neubiorev.2014.05.009

    Article  PubMed  Google Scholar 

  21. Lv XF, Qiu YW, Tian JZ et al (2013) Abnormal regional homogeneity of resting-state brain activity in patients with HBV-related cirrhosis without overt hepatic encephalopathy. Liver Int 33:375–383. https://doi.org/10.1111/liv.12096

    Article  CAS  PubMed  Google Scholar 

  22. Qiu Y, Guo Z, Han L, et al (2017) Network-level dysconnectivity in patients with nasopharyngeal carcinoma (NPC) early post-radiotherapy: longitudinal resting state fMRI study. Brain Imaging Behav 5:1279–1289. https://doi.org/10.1007/s11682-017-9801-0

    Article  Google Scholar 

  23. Zhao Z, Tang C, Yin D et al (2018) Frequency-specific alterations of regional homogeneity in subcortical stroke patients with different outcomes in hand function. Hum Brain Mapp 39:4373–4384. https://doi.org/10.1002/hbm.24277

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lin WC, Hsu TW, Chen CL et al (2015) Resting State-fMRI with ReHo analysis as a non-invasive modality for the prognosis of cirrhotic patients with overt hepatic encephalopathy. PLoS ONE 10:e126834. https://doi.org/10.1371/journal.pone.0126834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zhang Y, Gao J, Zhou H et al (2019) Pre-symptomatic local brain activity and functional connectivity alterations in nasopharyngeal carcinoma patients who developed radiation encephalopathy following radiotherapy. Brain Imaging Behav. https://doi.org/10.1007/s11682-019-00145-0

    Article  PubMed Central  PubMed  Google Scholar 

  26. Tomasi D, Volkow ND (2010) Functional connectivity density mapping. Proc Natl Acad Sci USA 107:9885–9890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kravitz DJ, Saleem KS, Baker CI et al (2013) The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 17(1):26–49. https://doi.org/10.1016/j.tics.2012.10.011

    Article  PubMed  Google Scholar 

  28. Lee AW, Law SC, Ng SH et al (1992) Retrospective analysis of nasopharyngeal carcinoma treated during 1976–1985: late complications following megavoltage irradiation. Br J Radiol 65(778):918–928. https://doi.org/10.1259/0007-1285-65-778-918

    Article  CAS  PubMed  Google Scholar 

  29. Lee AW, Ng WT, Pan JJ et al (2019) International guideline on dose prioritization and acceptance criteria in radiation therapy planning for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 105(3):567–580. https://doi.org/10.1016/j.ijrobp.2019.06.2540

    Article  CAS  PubMed  Google Scholar 

  30. Calhoun VD, Adali T, Pearlson GD et al (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Beckmann CF, DeLuca M, Devlin JT et al (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond, B, Biol Sci 360(1457):1001–1013. https://doi.org/10.1098/rstb.2005.1634

    Article  PubMed  Google Scholar 

  32. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5):655–667. https://doi.org/10.1007/s00429-010-0262-0

    Article  PubMed Central  PubMed  Google Scholar 

  33. Greene-Schloesser D, Robbins ME (2012) Radiation-induced cognitive impairment—from bench to bedside. Neuro Oncol 14(4):37–44. https://doi.org/10.1093/neuonc/nos196

    Article  Google Scholar 

  34. Zhang LY, Yang HY, Tian Y (2015) Radiation-induced cognitive impairment. Ther Targets Neurol Dis 2:e837. https://doi.org/10.14800/ttnd.837

    Article  CAS  Google Scholar 

  35. Sporns O, Honey CJ, Kotter R (2007) Identification and classification of hubs in brain networks. PLoS ONE 2:e1049

    Article  PubMed Central  PubMed  Google Scholar 

  36. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  37. Liao X, Vasilakos AV, He Y (2017) Small-world human brain networks: perspectives and challenges. Neurosci Biobehav Rev 77:286–300

    Article  PubMed  Google Scholar 

  38. Wang HZ, Qiu SJ, Lv XF et al (2012) Diffusion tensor imaging and 1H-MRS study on radiation-induced brain injury after nasopharyngeal carcinoma radiotherapy. Clin Radiol 67:340–345

    Article  PubMed  Google Scholar 

  39. Xiong WF, Qiu SJ, Wang HZ et al (2013) 1H-MR spectroscopy and diffusion tensor imaging of normal-appearing temporal white matter in patients with nasopharyngeal carcinoma after irradiation: initial experience. J Magn Reson Imaging 37:101–108

    Article  PubMed  Google Scholar 

  40. Suurmond R, van Rhee H, Hak T (2017) Introduction, comparison and validation of meta-essentials: a free and simple tool for meta-analysis. Res Synth Methods 8(4):537–553. https://doi.org/10.1002/jrsm.1260

    Article  PubMed Central  PubMed  Google Scholar 

  41. Leng X, Qin C, Lin H et al (2021) Altered topological properties of static/dynamic functional networks and cognitive function after radiotherapy for nasopharyngeal carcinoma using resting-state fMRI. Front Neurosci 15:690743. https://doi.org/10.3389/fnins.2021.690743

    Article  PubMed Central  PubMed  Google Scholar 

  42. Zhao LM, Kang YF, Gao JM et al (2021) Functional connectivity density for radiation encephalopathy prediction in nasopharyngeal carcinoma. Front Oncol 11:687127. https://doi.org/10.3389/fonc.2021.687127

    Article  PubMed Central  PubMed  Google Scholar 

  43. Ma Q, Zeng LL, Qin J et al (2017) Radiation-induced cerebellar-cerebellar functional connectivity alterations in nasopharyngeal carcinoma patients. Neuroreport 28:705–711. https://doi.org/10.1097/WNR.0000000000000813

    Article  CAS  PubMed  Google Scholar 

  44. Fu G, Xie Y, Pan J et al (2022) Longitudinal study of irradiation-induced brain functional network alterations in patients with nasopharyngeal carcinoma. Radiother Oncol. https://doi.org/10.1016/j.radonc.2022.06.008

    Article  PubMed  Google Scholar 

  45. Ren WT, Li YX, Wang K et al (2019) Cerebral function abnormalities in patients with nasopharyngeal carcinoma after radiotherapy: an observational magnetic resonance resting-state study. Chin Med J. https://doi.org/10.1097/CM9.0000000000000277

    Article  PubMed Central  PubMed  Google Scholar 

  46. Qiu Y, Guo Z, Han L et al (2018) Network-level dysconnectivity in patients with nasopharyngeal carcinoma (NPC) early post-radiotherapy: longitudinal resting state fMRI study. Brain Imaging Behav 12:1279–1289. https://doi.org/10.1007/s11682-017-9801-0

    Article  PubMed  Google Scholar 

  47. Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Liu Y, Gao JH, Liotti M et al (1999) Temporal dissociation of parallel processing in the human subcortical outputs. Nature 400:364–367

    Article  CAS  PubMed  Google Scholar 

  49. Shi L, Lin L (2019) The trim-and-fill method for publication bias: practical guidelines and recommendations based on a large database of meta-analyses. Medicine 98(23):e15987. https://doi.org/10.1097/MD.0000000000015987

    Article  PubMed Central  PubMed  Google Scholar 

  50. Brown WR, Thore CR, Moody DM et al (2005) Vascular damage after fractionated whole-brain irradiation in rats. Radiat Res 164:662–668. https://doi.org/10.1667/RR3453.1

    Article  CAS  PubMed  Google Scholar 

  51. Greene-Schloesser D, Robbins ME, Peiffer AM et al (2012) Radiation-induced brain injury: a review. Front Oncol 2:73. https://doi.org/10.3389/fonc.2012.00073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Sundgren PC (2009) MR spectroscopy in radiation injury. Ajnr Am J Neuroradiol 30:1469–1476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Chen WS, Li JJ, Zhang JH et al (2014) Magnetic resonance spectroscopic imaging of brain injury after nasopharyngeal cancer radiation in early delayed reaction. Genet Mol Res 13:6848–6854

    Article  CAS  PubMed  Google Scholar 

  54. Abayomi OK (1996) Pathogenesis of irradiation-induced cognitive dysfunction. Acta Oncol 35:659–663. https://doi.org/10.3109/02841869609083995

    Article  CAS  PubMed  Google Scholar 

  55. Voon NS, Lau FN, Zakaria R et al (2021) MRI-based brain structural changes following radiotherapy of nasopharyngeal carcinoma: a systematic review. Cancer Radiother 25(1):62–71. https://doi.org/10.1016/j.canrad.2020.07.008

    Article  CAS  PubMed  Google Scholar 

  56. Rocca MA, Pravata E, Valsasina P et al (2015) Hippocampal- DMN disconnectivity in MS is related to WM lesions and depression. Hum Brain Mapp 36:5051–5063

    Article  PubMed Central  PubMed  Google Scholar 

  57. Voon NS, Manan HA, Yahya N (2022) Diffusion tensor imaging indices as biomarkers for cognitive changes following paediatric radiotherapy: a systematic review and meta-analysis. Strahlenther Onkol. https://doi.org/10.1007/s00066-022-01905-6

    Article  PubMed  Google Scholar 

  58. Schnegg CI, Greene-Schloesser D, Kooshki M et al (2013) The PPAR delta agonist GW0742 inhibits neuroinflammation, but does not restore neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after whole-brain irradiation. Free Radic Biol Med 61:1–9

    Article  CAS  PubMed  Google Scholar 

  59. Monje ML, Palmer T (2003) Radiation injury and neurogenesis. Curr Opin Neurol 16:129–134

    Article  PubMed  Google Scholar 

  60. Hahn B, Ross TJ, Stein EA (2006) Neuroanatomical dissociation between bottom-up and top-down processes of visuospatial selective attention. Neuroimage 32:842–853

    Article  PubMed  Google Scholar 

  61. Cheung MC, Chan AS, Law SC et al (2003) Impact of radionecrosis on cognitive dysfunction in patients after radiotherapy for nasopharyngeal carcinoma. Cancer 97:2019–2026

    Article  PubMed  Google Scholar 

  62. Guo Z, Han L, Yang Y, He H, Li J, Chen H, Song T, Qiu Y, Lv X (2018) Longitudinal brain structural alterations in patients with nasopharyngeal carcinoma early after radiotherapy. Neuroimage Clin 19:252–259. https://doi.org/10.1016/j.nicl.2018.04.019

    Article  PubMed Central  PubMed  Google Scholar 

  63. Newman ME (2002) Assortative mixing in networks. Phys Rev Lett 89:208701. https://doi.org/10.1103/PhysRevLett.89.208701

    Article  CAS  PubMed  Google Scholar 

  64. Ravasz E, Barabási AL (2003) Hierarchical organization in complex networks. Phys Rev E Stat Nonlin Soft Matter Phys 67:26112. https://doi.org/10.1103/PhysRevE.67.026112

    Article  CAS  PubMed  Google Scholar 

  65. Wang S, Wu EX, Qiu D et al (2009) Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model. Cancer Res 69(3):1190–1198. https://doi.org/10.1158/0008-5472.CAN-08-2661

    Article  CAS  PubMed  Google Scholar 

  66. Yahya N, Manan HA (2021) Diffusion tensor imaging indices to predict cognitive changes following adult radiotherapy. Eur J Cancer Care 30(1):e13329. https://doi.org/10.1111/ecc.13329

    Article  Google Scholar 

  67. Voon NS, Manan HA, Yahya N (2021) Cognitive decline following radiotherapy of head and neck cancer: systematic review and meta-analysis of MRI correlates. Cancers (Basel) 13(24):6191. https://doi.org/10.3390/cancers13246191

    Article  PubMed  Google Scholar 

  68. Dumas JA, Makarewicz J, Schaubhut GJ et al (2013) Chemotherapy altered brain functional connectivity in women with breast cancer: a pilot study. Brain Imaging Behav 7:524–532

    Article  PubMed  Google Scholar 

  69. Hosseini SM, Kesler SR (2014) Multivariate pattern analysis of FMRI in breast cancer survivors and healthy women. J Int Neuropsychol Soc 20:391–401

    Article  PubMed  Google Scholar 

  70. Kesler SR, Wefel JS, Hosseini SM et al (2013) Default mode network connectivity distinguishes chemotherapy-treated breast cancer survivors from controls. Proc Natl Acad Sci USA 110:11600–11605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Wu L, Zhao H, Weng H et al (2019) Lasting effects of general anaesthetics on the brain in the young and elderly:’mixed picture’of neurotoxicity, neuroprotection and cognitive impairment. J Anesth 33(2):321–335

    PubMed Central  PubMed  Google Scholar 

  72. Sprung J, Schulte PJ, Knopman DS et al (2019) Cognitive function after surgery with regional or general anaesthesia: a population-based study. Alzheimers Dement 15(10):1243–1252

    Article  PubMed Central  PubMed  Google Scholar 

  73. Manan HA, Franz EA, Yahya N (2020) Functional connectivity changes in patients with brain tumours—a systematic review on resting state-fMRI. Neurol Psychiatry Brain Res 36:73–82

    Article  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Higher Learning (Malaysia)—Fundamental Research Grant (FRGS/1/2021/SS03/UKM/02/1), and the National University of Malaysia under grants FF-2020-013 and GP-2021-K017963.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, literature search, and data analysis were performed by Noor Shatirah Voon, Noorazrul Yahya, and Hanani A. Manan. The first draft of the manuscript was written by Noor Shatirah Voon and all authors commented on previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Noorazrul Yahya.

Ethics declarations

Conflict of interest

N.S. Voon, H.A. Manan, and N. Yahya declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Data availability statement

The data presented in this review are available in the main article or supplementary materials.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voon, N.S., Manan, H.A. & Yahya, N. Role of resting-state functional MRI in detecting brain functional changes following radiotherapy for head and neck cancer: a systematic review and meta-analysis. Strahlenther Onkol 199, 706–717 (2023). https://doi.org/10.1007/s00066-023-02089-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-023-02089-3

Keywords

Navigation