Skip to main content

Advertisement

Log in

CT radiomic predictors of local relapse after SBRT for lung oligometastases from colorectal cancer: a single institute pilot study

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Objectives

To assess the potential of radiomic features (RFs) extracted from simulation computed tomography (CT) images in discriminating local progression (LP) after stereotactic body radiotherapy (SBRT) in the management of lung oligometastases (LOM) from colorectal cancer (CRC).

Materials and methods

Thirty-eight patients with 70 LOM treated with SBRT were analyzed. The largest LOM was considered as most representative for each patient and was manually delineated by two blinded radiation oncologists. In all, 141 RFs were extracted from both contours according to IBSI (International Biomarker Standardization Initiative) recommendations. Based on the agreement between the two observers, 134/141 RFs were found to be robust against delineation (intraclass correlation coefficient [ICC] > 0.80); independent RFs were then assessed by Spearman correlation coefficients. The association between RFs and LP was assessed with Mann–Whitney test and univariate logistic regression (ULR): the discriminative power of the most informative RF was quantified by receiver-operating characteristics (ROC) analysis through area under curve (AUC).

Results

In all, 15/38 patients presented LP. Median time to progression was 14.6 months (range 2.4–66 months); 5/141 RFs were significantly associated to LP at ULR analysis (p < 0.05); among them, 4 RFs were selected as robust and independent: Statistical_Variance (AUC = 0.75, p = 0.002), Statistical_Range (AUC = 0.72, p = 0.013), Grey Level Size Zone Matrix (GLSZM) _zoneSizeNonUniformity (AUC = 0.70, p = 0.022), Grey Level Dependence Zone Matrix (GLDZM) _zoneDistanceEntropy (AUC = 0.70, p = 0.026). Importantly, the RF with the best performance (Statisical_Variance) is simply representative of density heterogeneity within LOM.

Conclusion

Four RFs extracted from planning CT were significantly associated with LP of LOM from CRC treated with SBRT. Results encourage further research on a larger population aiming to define a usable radiomic score combining the most predictive RFs and, possibly, additional clinical features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Turajlic S, Swanton C (2016) Metastasis as an evolutionary process. Science 352:169–175

    Article  CAS  PubMed  Google Scholar 

  2. Abbosh C, Birkbak NJ, Wilson GA et al (2017) Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545:446–451 (Erratum: Nature, 2018; 554:264)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Turajlic S, Xu H, Litchfield K et al (2018) Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173:581–594.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bartlett EK, Simmons KD, Wachtel H et al (2015) The rise in metastasectomy across cancer types over the past decade. Cancer 121:747–757

    Article  PubMed  Google Scholar 

  5. Lewis SL, Porceddu S, Nakamura N et al (2017) Definitive stereotactic body radiotherapy (SBRT) for extracranial oligometastases: an international survey of 1000 radiation oncologists. Am J Clin Oncol 40:418–422

    Article  PubMed  Google Scholar 

  6. Palma DA, Olson R, Harrow S et al (2019) Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet 393:2051–2058

    Article  PubMed  Google Scholar 

  7. Palma DA, Olson R, Harrow S et al (2020) Stereotactic ablative radiotherapy for the comprehensive treatment of oligometastatic cancers: long-term results of the SABR-COMET phase II randomized trial. J Clin Oncol 38:2830–2838

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zelefsky MJ, Yamada Y, Greco C et al (2021) Phase 3 multi.center, prospective, randomized trial comparing single-dose 24 Gy radiation therapy to a 3-fraction SBRT regimen in the treatment of oligometastatic cancer. Int J Radiat Oncol Biol Phys 110(3):672–679

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sharma A, Duijm M, Oomen-de Hoop E et al (2018) Factors affecting local control of pulmonary oligometastases treated with stereotactic body radiotherapy. Acta Oncol 57(8):1031–1037. https://doi.org/10.1080/0284186X.2018.1445285

    Article  PubMed  Google Scholar 

  10. Buglione M, Jereczek-Fossa BA, Bonù ML et al (2020) Radiosurgery and fractionated stereotactic radiotherapy in oligometastatic/oligoprogressive non-small cell lung cancer patients: results of a multi-institutional series of 198 patients treated with “curative” intent. Cancer Treat Res 141:1–8

    Google Scholar 

  11. Sheikh S, Chen H, Sahgal A et al (2022) An analysis of a large multi-institutional database reveals important associations between treatment parameters and clinical outcomes for stereotactic body radiotherapy (SBRT) of oligometastatic colorectal cancer. Radiother Oncol 167:187–194

    Article  CAS  PubMed  Google Scholar 

  12. Nicosia L, Franceschini D, Perrone-Congedi F et al (2021) A multicenter LArge retrospectIve daTabase on the personalization of Stereotactic ABlative radiotherapy use in lung metastases from colon-rectal cancer: the laIT-SABR study. Radiother Oncol 166:92–99. https://doi.org/10.1016/j.radonc.2021.10.023

    Article  PubMed  Google Scholar 

  13. Bezjak A, Paulus R, Gaspar LE et al (2016) Primary study endpoint analysis for NRG oncology/RTOG 0813 trial of Stereotactic body radiation therapy (SBRT) for centrally located non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 94(1):5–6

    Article  Google Scholar 

  14. Whybra P, Parkinson C, Foley K et al (2019) Assessing radiomic feature robustness to interpolation in (18) F‑FDG PET imaging. Sci Rep 9(1):9649

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338. https://doi.org/10.1148/radiol.2020191145

    Article  PubMed  Google Scholar 

  16. Zwanenburg A, Leger S, Vallières M et al (2016) Initiative, for the I. B. S. Image biomarker standardisation initiative (arXiv)

    Google Scholar 

  17. Tixier F, Hatt M, Le Rest CC et al (2012) Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med 53:693–700

    Article  PubMed  Google Scholar 

  18. Vallieres M, Zwanenburg A, Badic B et al (2018) Responsible radiomics research for faster clinical translation. J Nucl Med 59(2):189–193

    Article  PubMed  PubMed Central  Google Scholar 

  19. Belli ML, Mori M, Broggi S et al (2018) Quantifying the robustness of [18F]FDG-PET/CT radiomic features with respect to tumor delineation in head and neck and pancreatic cancer patients. Phys Med 49:105–111

    Article  PubMed  Google Scholar 

  20. Mori M, Benedetti G, Partelli S et al (2019) Ct radiomic features of pancreatic neuroendocrine neoplasms (panNEN) are robust against delineation uncertainty. Phys Med 57:41–46

    Article  PubMed  Google Scholar 

  21. Avanzo M, Gagliardi V, Stancanello J et al (2021) Combining computed tomography and biologically effective dose in radiomics and deep learning improves prediction of tumor response to robotic lung stereotactic body radiation therapy. Med Phys 48:6257–6269

    Article  CAS  PubMed  Google Scholar 

  22. Seuntjens J, Lartigau EF, Cora S et al (2014) ICRU report no. 91: prescribing, recording, and reporting of stereotactic treatments with small photon beams. J ICRU 14(2):1–152

  23. Rogers W, Seetha ST, Refaee TAG et al (2020) Radiomics : from qualitative to quantitative imaging. Br J Radiol 93(1108):20190948. https://doi.org/10.1259/bjr.20190948

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141

    Article  PubMed  Google Scholar 

  25. Aerts HJWL, Velazquez ER, Leijenaar RTH et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. https://doi.org/10.1038/ncomms5006

    Article  CAS  PubMed  Google Scholar 

  26. Dercle L, Fronheiser M, Lu L et al (2020) Identifcation of non-small cell lung cancer sensitive to systemic cancer therapies using radiomics. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-2942

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mori M, Passoni P, Incerti E et al (2020) Training and validation of a robust PET radiomic-based index to predict distant-relapse-free-survival after radio-chemotherapy for locally advanced pancreatic cancer. Radiother Oncol 153:258–264. https://doi.org/10.1016/j.radonc.2020.07.003

    Article  CAS  PubMed  Google Scholar 

  28. Tang C, Hobbs B, Amer A et al (2018) Development of an immune-pathology informed radiomics model for non-small cell lung cancer. Sci Rep 8(1):1922. https://doi.org/10.1038/s41598-018-20471-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee K, Le T, Hau E et al (2021) A systematic review into the radiological features predicting local recurrence after stereotactic ablative body radiotherapy (SABR) in patients with non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2021.11.027

    Article  PubMed  PubMed Central  Google Scholar 

  30. Osti MF, Agolli L, Valeriani M et al (2018) 30 Gy single dose stereotactic body radiation therapy (SBRT): report on outcome in a large series of patients with lung oligometastatic disease. Cancer Treat Res 122:165–170. https://doi.org/10.1016/j.lungcan.06.018

    Article  CAS  Google Scholar 

  31. Helou J, Thibault I, Poon I et al (2017) Stereotactic ablative radiation therapy for pulmonary metastases: histology, dose, and indication matter. Int J Radiat Oncol Biol Phys 98(2):419–427. https://doi.org/10.1016/j.ijrobp.2017.02.093

    Article  PubMed  Google Scholar 

  32. Virbel G, Le Fèvre C, Noël G, Antoni D (2021) Stereotactic body radiotherapy for patients with lung oligometastatic disease: a five-year review. Cancers. https://doi.org/10.3390/cancers13143623

    Article  PubMed  PubMed Central  Google Scholar 

  33. Badic B, Hatt M, Durand S et al (2019) Radiogenomics-based cancer prognosis in colorectal cancer. Sci Rep 9:9743

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moreira JM, Santiago I, Santinha J et al (2019) Challenges and promises of radiomics for rectal cancer. Curr Colorectal Cancer Rep 15:175–180

    Article  Google Scholar 

  35. Formacon-Wood I, Faiver-Finn C, O’Connor JP, Price GJ (2020) Radiomics as a personalized medicine tool in lung cancer: separating the hope from the hype. Cancer Treat Res 146:197–208

    Google Scholar 

  36. Chang E, Joel MZ, Chang HY et al (2021) Comparison of radiomic feature aggregation methods for patients with multiple tumors. Sci Rep 11:9758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Chiara Brombin (MSc, PhD, University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy) for her help in drafting the final version of the statistical analysis.

Funding

Dr. Martina Mori, PhD, receives funds from the Italian Association for Cancer Research (AIRC, IG23150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Fodor MD.

Ethics declarations

Conflict of interest

A. Fodor, M. Mori, R. Tummineri, S. Broggi, C.L. Deantoni, P. Mangili, S. Baroni, S.L. Villa, I. Dell’Oca, A. Del Vecchio, C. Fiorino and N. Di Muzio declare that they have no competing interests.

Additional information

Data availability statement

The data that support the findings of this study (anonymized individual participant data) are available on request from the corresponding author to researchers who provide a methodologically sound proposal. Requests made to the corresponding author (AF) will be evaluated by the IRCCS San Raffaele Scientific Institute Ethics Committee.

Supplementary Information

66_2022_2034_MOESM1_ESM.tif

Fig. 1 Suppl.: The heat map of radiomic features extracted. The most correlated couplespairs of features according to the Spearman coefficient are reported in red and green

66_2022_2034_MOESM2_ESM.docx

CT radiomic predictors of local relapse after SBRT for lung oligometastases from colorectal cancer: a single Institute pilot study

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fodor, A., Mori, M., Tummineri, R. et al. CT radiomic predictors of local relapse after SBRT for lung oligometastases from colorectal cancer: a single institute pilot study. Strahlenther Onkol 199, 477–484 (2023). https://doi.org/10.1007/s00066-022-02034-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-022-02034-w

Keywords

Navigation