Skip to main content
Log in

Akute Nierenfunktionsstörung im perioperativen Umfeld

Acute kidney injury in the perioperative setting

  • Leitthema
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Akute Nierenfunktionsstörungen („acute kidney injury“, AKI) sind im perioperativen Bereich mit einer hohen Morbidität und Letalität verbunden und erhöhen im Langzeitverlauf das Risiko für eine chronische Niereninsuffizienz. Die wichtigsten prophylaktischen Maßnahmen sind die präoperative Identifizierung von Risikopatienten, die perioperative Vermeidung von nephrotoxischen Medikamenten sowie eine frühe und zielgerichtete hämodynamische Stabilisierung. Die Hauptursachen für eine perioperative AKI sind schwere Sepsis und septischer Schock, Volumenmangelzustände sowie kardiales Versagen.

Mögliche Nierenersatzverfahren

Die Wahl des Nierenersatzverfahrens kann unter Berücksichtigung der lokalen Ressourcen erfolgen. Allerdings sind operative Patienten häufig pulmonal und hämodynamisch instabil, sodass auch unter Berücksichtigung der oft erheblichen Volumenverschiebungen kontinuierliche Verfahren vorteilhaft sind. Wenn Patienten regelhaft zu Revisionseingriffen in den Operationssaal verbracht werden müssen, können prolongierte Dialyseverfahren („slow-extended daily dialysis“, SLEDD) in Form einer 8–12 h dauernden Behandlung logistisch sinnvoll sein. Für die besonders blutungsgefährdeten chirurgischen Patienten kann mit der regionalen Zitratantikoagulation das Blutungsrisiko und der Transfusionsbedarf signifikant reduziert werden.

Ausblick

Eine aktuelle Metaanalyse legt nahe, dass bei chirurgischen Patienten ein früher Behandlungsbeginn die Letalität senkt. Bei speziellen chirurgischen Krankheitsbildern, wie z. B. dem akuten Aortenverschluss (Leriche-Syndom), sind Patienten oft schon intraoperativ nach Wiedereröffnung der verschlossenen Strombahn durch eine hochgradige metabolische Acidose sowie bedrohliche Hyperkaliämien gefährdet. Hier kann mit mobilen Tanknierensystemen bereits intraoperativ eine hocheffektive Dialyse sicher durchgeführt werden.

Abstract

Background

Perioperative acute kidney injury (AKI) is common and is associated with adverse clinical outcomes, excess mortality, and an increased risk for chronic renal failure. Recommendations to prevent perioperative AKI include the early identification of patients at risk, the avoidance of nephrotoxic drugs, and early goal-directed haemodynamic stabilization. The major causes for perioperative AKI are severe sepsis and septic shock, hypovolemia, bleeding and cardiac failure.

Possible renal replacement modalities

The choice of modality, i.e. intermittent or continuous renal replacement (CRRT) therapy, can be made based on local resources. However, surgical patients frequently have impaired haemodynamics, a decreased pulmonary function and require removal of large amounts of fluid. In such cases, CRRT offers improved haemodynamic stability and volume control. Frequently, patients must be transferred to the operating theatre for redo procedures. Here, slow-extended daily dialysis treatments of 8–12 h can deliver a high dialysis dose with good haemodynamic stability at reduced costs. Surgical patients per se have an increased risk of bleeding. Regional citrate anticoagulation is a new and effective mode of anticoagulation which significantly reduces bleeding risk and transfusion requirements.

Conclusion

Data from a recent meta-analysis show that, in surgical patients, mortality is reduced when renal replacement therapy is started early. In certain surgical diseases, i.e. acute occlusive disease of the abdominal aorta (Leriche’s syndrome) following surgical reperfusion, patients are at risk of severe metabolic acidosis and life-threatening hyperkalemia. In such cases, intraoperative dialysis using a mobile batch system can help to avoid these complications by delivering an effective dialysis therapy at the time of reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Alsabbagh MM, Asmar A, Ejaz NI et al (2013) Update on clinical trials for the prevention of acute kidney injury in patients undergoing cardiac surgery. Am J Surg 206:86–95

    Article  PubMed  Google Scholar 

  2. Bagshaw SM, Berthiaume LR, Delaney A et al (2008) Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: a meta-analysis. Crit Care Med 36:610–617

    Article  PubMed  Google Scholar 

  3. Brienza N, Giglio MT, Marucci M (2010) Preventing acute kidney injury after noncardiac surgery. Curr Opin Crit Care 16:353–358

    Article  PubMed  Google Scholar 

  4. Brienza N, Giglio MT, Marucci M et al (2009) Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 37:2079–2090

    Article  PubMed  Google Scholar 

  5. Chen CY, Lin YR, Zhao LL et al (2013) Clinical factors in predicting acute renal failure caused by rhabdomyolysis in the ED. Am J Emerg Med 31:1062–1066

    Article  PubMed  Google Scholar 

  6. Coca SG, Garg AX, Swaminathan M et al (2013) Preoperative angiotensin-converting enzyme inhibitors and angiotensin receptor blocker use and acute kidney injury in patients undergoing cardiac surgery. Nephrol Dial Transplant 28:2787–2799

    Article  CAS  PubMed  Google Scholar 

  7. Endre ZH, Pickering JW, Walker RJ (2011) Clearance and beyond: the complementary roles of GFR measurement and injury biomarkers in acute kidney injury (AKI). Am J Physiol Renal Physiol 301:F697–F707

    Article  CAS  PubMed  Google Scholar 

  8. Fliser D, Kielstein JT (2006) Technology insight: treatment of renal failure in the intensive care unit with extended dialysis. Nat Clin Pract Nephrol 2:32–39

    Article  PubMed  Google Scholar 

  9. Gammelager H, Christiansen CF, Johansen MB et al (2013) Five-year risk of end-stage renal disease among intensive care patients surviving dialysis-requiring acute kidney injury: a nationwide cohort study. Crit Care 17:R145

    Article  PubMed Central  PubMed  Google Scholar 

  10. Harirforoosh S, Jamali F (2009) Renal adverse effects of nonsteroidal anti-inflammatory drugs. Expert Opin Drug Saf 8:669–681

    Article  CAS  PubMed  Google Scholar 

  11. Heyne N, Guthoff M, Krieger J et al (2012) High cut-off renal replacement therapy for removal of myoglobin in severe rhabdomyolysis and acute kidney injury: a case series. Nephron Clin Pract 121:c159–c164

    Article  CAS  PubMed  Google Scholar 

  12. Hopf HB, Hochscherf M, Jehmlich M et al (2007) Mobile single-pass batch hemodialysis system in intensive care medicine-reduction of costs and workload in renal replacement therapy. Anaesthesist 56:686–690

    Article  PubMed  Google Scholar 

  13. Kalb R, Kram R, Morgera S et al (2013) Regional citrate anticoagulation for high volume continuous venovenous hemodialysis in surgical patients with high bleeding risk. Ther Apher Dial 17:202–212

    Article  CAS  PubMed  Google Scholar 

  14. Karvellas CJ, Farhat MR, Sajjad I et al (2011) A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care 15:R72

    Article  PubMed Central  PubMed  Google Scholar 

  15. Mooney JF, Ranasinghe I, Chow CK et al (2013) Preoperative estimates of glomerular filtration rate as predictors of outcome after surgery: a systematic review and meta-analysis. Anesthesiology 118:809–824

    Article  PubMed  Google Scholar 

  16. Morgera S, Scholle C, Melzer C et al (2004) A simple, safe and effective citrate anticoagulation protocol for the genius dialysis system in acute renal failure. Nephron Clin Pract 98:c35–c40

    Article  CAS  PubMed  Google Scholar 

  17. Myburgh JA, Mythen MG (2013) Resuscitation fluids. N Engl J Med 369:1243–1251

    Article  CAS  PubMed  Google Scholar 

  18. Ostermann M, Dickie H, Barrett NA (2012) Renal replacement therapy in critically ill patients with acute kidney injury – when to start. Nephrol Dial Transplant 27:2242–2248

    Article  PubMed  Google Scholar 

  19. Oudemans-Van Straaten HM, Ostermann M (2012) Bench-to-bedside review: citrate for continuous renal replacement therapy, from science to practice. Crit Care 16:249

    Article  Google Scholar 

  20. Outcomes KDIG (2012) KDIGO practice guidelines for acute kidney injury. Kidney Int Suppl 2:1–124

    Article  Google Scholar 

  21. Prowle JR, Echeverri JE, Ligabo EV et al (2010) Fluid balance and acute kidney injury. Nat Rev Nephrol 6:107–115

    Article  PubMed  Google Scholar 

  22. Rehm M (2013) Limited applications for hydroxyethyl starch: background and alternative concepts. Anaesthesist 62:644–655

    Article  CAS  PubMed  Google Scholar 

  23. Saner FH, Treckmann JW, Geis A et al (2012) Efficacy and safety of regional citrate anticoagulation in liver transplant patients requiring post-operative renal replacement therapy. Nephrol Dial Transplant 27:1651–1657

    Article  CAS  PubMed  Google Scholar 

  24. Schefold JC, Von Haehling S, Pschowski R et al (2014) The effect of continuous versus intermittent renal replacement therapy on the outcome of critically ill patients with acute renal failure (CONVINT): a prospective randomized controlled trial. Crit Care 18:R11

    Article  PubMed Central  PubMed  Google Scholar 

  25. Schneider M, Thomas K, Liefeldt L et al (2007) Efficacy and safety of intermittent hemodialysis using citrate as anticoagulant: a prospective study. Clin Nephrol 68:302–307

    Article  CAS  PubMed  Google Scholar 

  26. Shlipak MG, Matsushita K, Arnlov J et al (2013) Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med 369:932–943

    Article  CAS  PubMed  Google Scholar 

  27. Singbartl K, Kellum JA (2012) AKI in the ICU: definition, epidemiology, risk stratification, and outcomes. Kidney Int 81:819–825

    Article  CAS  PubMed  Google Scholar 

  28. Stevens LA, Coresh J, Greene T et al (2006) Assessing kidney function – measured and estimated glomerular filtration rate. N Engl J Med 354:2473–2483

    Article  CAS  PubMed  Google Scholar 

  29. Thielmann M, Kottenberg E, Kleinbongard P et al (2013) Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet 382:597–604

    Article  PubMed  Google Scholar 

  30. Thoma A (2013) Pathophysiology and management of angiotensin-converting enzyme inhibitor-associated refractory hypotension during the perioperative period. Aana J 81:133–140

    PubMed  Google Scholar 

  31. Van Der Hoven B, Van Der Spoel JI, Scheffer GJ et al (1998) Intraoperative continuous hemofiltration for metabolic management in acute aortoiliac occlusion. J Clin Anesth 10:599–602

    Article  Google Scholar 

  32. Verma H, Baliga K, George RK et al (2013) Surgical and endovascular treatment of occlusive aortic syndromes. J Cardiovasc Surg (Torino) 54:55–69

    Google Scholar 

  33. Walsh M, Devereaux PJ, Garg AX et al (2013) Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 119:507–515

    Article  PubMed  Google Scholar 

  34. Yunos NM, Bellomo R, Hegarty C et al (2012) Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308:1566–1572

    Article  CAS  PubMed  Google Scholar 

  35. Zimmerman RF, Ezeanuna PU, Kane JC et al (2011) Ischemic preconditioning at a remote site prevents acute kidney injury in patients following cardiac surgery. Kidney Int 80:861–867

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. D. Kindgen-Milles erhielt Vortragshonorare von den Firmen Gambro-Hospal und Fresenius Medical Care sowie Forschungsunterstützung von Fresenius Medical Care.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kindgen-Milles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kindgen-Milles, D. Akute Nierenfunktionsstörung im perioperativen Umfeld. Med Klin Intensivmed Notfmed 109, 324–330 (2014). https://doi.org/10.1007/s00063-014-0348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-014-0348-1

Schlüsselwörter

Keywords

Navigation