Skip to main content
Log in

Photon Counting Versus Energy-integrated Detector CT in Detection of Superior Semicircular Canal Dehiscence

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Background

Superior semicircular canal dehiscence (SSCD), an osseous defect overlying the SSC, is associated with a constellation of audiovestibular symptoms. This study sought to compare conventional energy-integrated detector (EID) computed tomography (CT) to photon-counting detector (PCD)-CT in the detection of SSCD.

Material and Methods

Included patients were prospectively recruited to undergo a temporal bone CT on both EID-CT and PCD-CT scanners. Two blinded neuroradiologists reviewed both sets of images for 1) the presence or absence of SSCD (graded as present, absent, or indeterminate), and 2) the width of the bone overlying the SSC (if present). Any discrepancies in the presence or absence of SSCD were agreed upon by consensus.

Results

In the study 31 patients were evaluated, for a total of 60 individual temporal bones (2 were excluded). Regarding SSCD presence or absence, there was substantial agreement between EID-CT and PCD-CT (k = 0.76; 95% confidence interval, CI 0.54–0.97); however, SSCD was present in only 9 (15.0%) temporal bones on PCD-CT, while EID-CT examinations were interpreted as being positive in 14 (23.3%) temporal bones. This yielded a false positive rate of 8.3% on EID-CT. The bone overlying the SSC was thinner on EID-CT images (0.66 mm; SD = 0.64) than on PCD-CT images (0.72 mm; SD = 0.66) (p < 0.001).

Conclusion

The EID-CT examinations tend to overcall the presence of SSCD compared to PCD-CT and also underestimate the thickness of bone overlying the SSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Minor LB, Solomon D, Zinreich JS, Zee DS. Sound- and/or pressure-induced vertigo due to bone dehiscence of the superior semicircular canal. Arch Otolaryngol Head Neck Surg. 1998;124(3):249–58. https://doi.org/10.1001/archotol.124.3.249.

    Article  CAS  PubMed  Google Scholar 

  2. Waldeck S, Lanfermann H, von Falck C, et al. New classification of superior semicircular canal dehiscence in HRCT. PLoS ONE. 2022;17(1):e262758. https://doi.org/10.1371/journal.pone.0262758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chi FL, Ren DD, Dai CF. Variety of audiologic manifestations in patients with superior semicircular canal dehiscence. Otol Neurotol. 2010;31(1):2–10. https://doi.org/10.1097/mao.0b013e3181bc35ce.

    Article  PubMed  Google Scholar 

  4. Chilvers G, McKay-Davies I. Recent advances in superior semicircular canal dehiscence syndrome. J Laryngol Otol. 2015;129(3):217–25. https://doi.org/10.1017/S0022215115000183.

    Article  CAS  PubMed  Google Scholar 

  5. Banerjee A, Whyte A, Atlas MD. Superior canal dehiscence: review of a new condition. Clin Otolaryngol. 2005;30(1):9–15. https://doi.org/10.1111/j.1365-2273.2004.00940.x.

    Article  CAS  PubMed  Google Scholar 

  6. Berning AW, Arani K, Branstetter BF. Prevalence of superior semicircular canal dehiscence on high-resolution CT imaging in patients without vestibular or auditory abnormalities. AJNR Am J Neuroradiol. 2019;40(4):709–12. https://doi.org/10.3174/ajnr.A5999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Williamson RA, Vrabec JT, Coker NJ, Sandlin M. Coronal computed tomography prevalence of superior semicircular canal dehiscence. Otolaryngol. 2003;129(5):481–9. https://doi.org/10.1016/S0194-59980301391-3.

    Article  Google Scholar 

  8. Masaki Y. The prevalence of superior canal dehiscence syndrome as assessed by temporal bone computed tomography imaging. Acta Otolaryngol. 2011;131(3):258–62. https://doi.org/10.3109/00016489.2010.526145.

    Article  PubMed  Google Scholar 

  9. Nadgir RN, Ozonoff A, Devaiah AK, Halderman AA, Sakai O. Superior semicircular canal dehiscence: congenital or acquired condition? AJNR Am J Neuroradiol. 2011;32(5):947–9. https://doi.org/10.3174/ajnr.A2437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stimmer H, Hamann KF, Zeiter S, Naumann A, Rummeny EJ. Semicircular canal dehiscence in HR multislice computed tomography: distribution, frequency, and clinical relevance. Eur Arch Otorhinolaryngol. 2012;269(2):475–80. https://doi.org/10.1007/s00405-011-1688-6.

    Article  CAS  PubMed  Google Scholar 

  11. Mondina M, Bonnard D, Barreau X, Darrouzet V, Franco-Vidal V. Anatomo-radiological study of the superior semicircular canal dehiscence of 37 cadaver temporal bones. Surg Radiol Anat. 2013;35(1):55–9. https://doi.org/10.1007/s00276-012-0992-1.

    Article  PubMed  Google Scholar 

  12. Gartrell BC, Gentry LR, Kennedy TA, Gubbels SP. Radiographic features of superior semicircular canal dehiscence in the setting of chronic ear disease. Otol Neurotol. 2014;35(1):91–6. https://doi.org/10.1097/MAO.0b013e3182a03522.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Esquivel A, Ferrero A, Mileto A, et al. Photon-counting detector CT: key points radiologists should know. Korean J Radiol. 2022;23(9):854–65. https://doi.org/10.3348/kjr.2022.0377.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gutjahr R, Halaweish AF, Yu Z, et al. Human imaging with photon counting-based computed tomography at clinical dose levels: contrast-to-noise ratio and cadaver studies. Invest Radiol. 2016;51(7):421–9. https://doi.org/10.1097/RLI.0000000000000251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leng S, Bruesewitz M, Tao S, et al. Photon-counting detector CT: system design and clinical applications of an emerging technology. RadioGraphics. 2019;39(3):729–43. https://doi.org/10.1148/rg.2019180115.

    Article  PubMed  Google Scholar 

  16. Leng S, Yu Z, Halaweish A, et al. Dose-efficient ultrahigh-resolution scan mode using a photon counting detector computed tomography system. J Med Imaging. 2016;3(4):43504. https://doi.org/10.1117/1.JMI.3.4.043504.

    Article  Google Scholar 

  17. Leng S, Rajendran K, Gong H, et al. 150-μm spatial resolution using photon-counting detector computed tomography technology: technical performance and first patient images. Invest Radiol. 2018;53(11):655–62. https://doi.org/10.1097/RLI.0000000000000488.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rajendran K, Voss BA, Zhou W, et al. Dose reduction for sinus and temporal bone imaging using photon-counting detector CT with an additional tin filter. Invest Radiol. 2020;55(2):91–100. https://doi.org/10.1097/RLI.0000000000000614.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Benson JC, Rajendran K, Lane JI, et al. A new frontier in temporal bone imaging: photon-counting detector CT demonstrates superior visualization of critical anatomic structures at reduced radiation dose. AJNR Am J Neuroradiol. 2022;43(4):579–84. https://doi.org/10.3174/ajnr.A7452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou W, Lane JI, Carlson ML, et al. Comparison of a photon-counting-detector CT with an energy-integrating-detector CT for temporal bone imaging: a cadaveric study. AJNR Am J Neuroradiol. 2018;39(9):1733–8. https://doi.org/10.3174/ajnr.A5768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leng S, Diehn FE, Lane JI, et al. Temporal bone CT: improved image quality and potential for decreased radiation dose using an ultra-high-resolution scan mode with an iterative reconstruction algorithm. AJNR Am J Neuroradiol. 2015;36(9):1599–603. https://doi.org/10.3174/ajnr.A4338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McCollough CH, Leng S, Sunnegardh J, et al. Spatial resolution improvement and dose reduction potential for inner ear CT imaging using a z-axis deconvolution technique. Med Phys. 2013;40(6):61904. https://doi.org/10.1118/1.4802730.

    Article  PubMed  Google Scholar 

  23. Carey JP, Minor LB, Nager GT. Dehiscence or thinning of bone overlying the superior semicircular canal in a temporal bone survey. Arch Otolaryngol Head Neck Surg. 2000;126(2):137–47. https://doi.org/10.1001/archotol.126.2.137.

    Article  CAS  PubMed  Google Scholar 

  24. Crovetto M, Whyte J, Rodriguez OM, Lecumberri I, Martinez C, Eléxpuru J. Anatomo-radiological study of the superior semicircular canal dehiscence radiological considerations of superior and posterior semicircular canals. Eur J Radiol. 2010;76(2):167–72. https://doi.org/10.1016/j.ejrad.2009.05.038.

    Article  CAS  PubMed  Google Scholar 

  25. Gupta R, Bartling SH, Basu SK, et al. Experimental flat-panel high-spatial-resolution volume CT of the temporal bone. AJNR Am J Neuroradiol. 2004;25(8):1417–24.

    PubMed  PubMed Central  Google Scholar 

  26. Majdani O, Thews K, Bartling S, et al. Temporal bone imaging: comparison of flat panel volume CT and multisection CT. AJNR Am J Neuroradiol. 2009;30(7):1419–24. https://doi.org/10.3174/ajnr.A1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Piergallini L, Scola E, Tuscano B, et al. Flat-panel CT versus 128-slice CT in temporal bone imaging: assessment of image quality and radiation dose. Eur J Radiol. 2018;106:106–13. https://doi.org/10.1016/j.ejrad.2018.07.013.

    Article  PubMed  Google Scholar 

  28. Tunkel AE, Carey JP, Pearl M. Flat panel computed tomography in the diagnosis of superior semicircular canal dehiscence syndrome. Otol Neurotol. 2019;40(2):213–7. https://doi.org/10.1097/MAO.0000000000002076.

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Benson.

Ethics declarations

Conflict of interest

N.S. Doyle, J.C. Benson, C.M. Carr, F.E. Diehn, M.L. Carlson, S. Leng and J.I. Lane declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants or on human tissue were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. This study took place following approval by the local IRB. All patients were informed of risks, and written informed consent was obtained.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doyle, N.S., Benson, J.C., Carr, C.M. et al. Photon Counting Versus Energy-integrated Detector CT in Detection of Superior Semicircular Canal Dehiscence. Clin Neuroradiol 34, 251–255 (2024). https://doi.org/10.1007/s00062-023-01368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-023-01368-x

Keywords

Navigation