Skip to main content

Advertisement

Log in

Elevated Intraocular Pressure Moderated Brain Morphometry in High-tension Glaucoma: a Structural MRI Study

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

High-tension glaucoma (HTG) is one of the most common forms of primary open angle glaucoma. The purpose of this study was to assess in HTG brain, whether the elevated intraocular pressure (IOP) had an effect on the brain morphological alterations via structural MRI. We acquired T1WI structural MRI images from 56 subjects including 36 HTG patients and 20 healthy controls. We tested whether the brain morphometry was associated with the mean IOP in HTG patients. Moreover, we conducted moderation analysis to assess the interactions between subject type (HTG - healthy controls) and IOP. In HTG group, cortical thickness was negatively correlated with the mean IOP in the left rostral middle frontal gyrus, left pars triangularis, right precentral gyrus, left postcentral gyrus, left superior temporal gyrus (p < 0.05, FDR corrected). Four of the five regions negatively correlated with mean IOP showed reduced cortical thickness in HTG group compared with healthy controls, which were the left rostral middle frontal gyrus, left pars triangularis, left postcentral gyrus and left superior temporal gyrus (p < 0.05, FDR corrected). IOP moderated the interaction between subject type and cortical thickness of the left rostral middle frontal gyrus (p = 0.0017), left pars triangularis (p = 0.0011), left postcentral gyrus (p = 0.0040) and left superior temporal gyrus (p = 0.0066). Elevated IOP may result brain morphometry alterations such as cortical thinning. The relationship between IOP and brain morphometry underlines the importance of the IOP regulation for HTG patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Giorgio A, Zhang J, Costantino F, et al. Diffuse brain damage in normal tension glaucoma. Hum Brain Mapp. 2018;39:532–41.

    Article  PubMed  Google Scholar 

  2. Kwon YH, Fingert JH, Kuehn MH, et al. Primary open-angle glaucoma. N Eng J Med. 2004;363:1711.

    Google Scholar 

  3. Yi W, Weizhao L, Tingqin Y, et al. Functional MRI reveals effects of high intraocular pressure on central nervous system in high-tension glaucoma patients. Acta Ophthalmol. 2019;97:e341–e8.

    Google Scholar 

  4. King D, Drance SM, Douglas GR, et al. Comparison of visual field defects in normal-tension glaucoma and high-tension glaucoma. Am J Ophthalmol. 1986;101:204–7.

    Article  CAS  PubMed  Google Scholar 

  5. Sommer A. Intraocular pressure and glaucoma. Am J Ophthalmol. 1989;107:186–8.

    Article  CAS  PubMed  Google Scholar 

  6. Chauhan BC, Drance SM. The influence of intraocular pressure on visual field damage in patients with normal-tension and high-tension glaucoma. Invest Ophthalmol Vis Sci. 1990;31:2367–72.

    CAS  PubMed  Google Scholar 

  7. Lawlor M, Daneshmeyer H, Levin LA, et al. Glaucoma and the brain: trans-synaptic degeneration, structural change and implications for neuroprotection. Surv Ophthalmol. 2018;63:296–306.

    Article  PubMed  Google Scholar 

  8. Adachi M, Takahashi K, Nishikawa M, et al. High intraocular pressure-induced ischemia and reperfusion injury in the optic nerve and retina in rats. Graefes Arch Clin Exp Ophthalmol. 1996;234:445–51.

    Article  CAS  PubMed  Google Scholar 

  9. Dai H, Morelli JN, Ai F, et al. Resting-state functional MRI: functional connectivity analysis of the visual cortex in primary open-angle glaucoma patients. Hum Brain Mapp. 2014;34:2455–63.

    Article  Google Scholar 

  10. Frezzotti P, Giorgio A, Toto F, et al. Early changes of brain connectivity in primary open angle glaucoma. Hum Brain Mapp. 2016;37:4581–96.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brambilla P, Hardan A, di Nemi SU, et al. Brain anatomy and development in autism: review of structural MRI studies. Brain Res Bull. 2003;61:557–69.

    Article  PubMed  Google Scholar 

  12. Frisoni GB, Fox NC, Clifford RJ Jr, et al. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6:67–77.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Frezzotti P, Giorgio A, Motolese I, et al. Structural and functional brain changes beyond visual system in patients with advanced glaucoma. Plos One. 2014;9:e105931.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Jiang MM, Zhou Q, Liu XY, et al. Structural and functional brain changes in early- and mid-stage primary open-angle glaucoma using voxel-based morphometry and functional magnetic resonance imaging. Medicine. 2017;96:e6139.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen WW, Wang N, Cai S, et al. Structural brain abnormalities in patients with primary open-angle glaucoma: a study with 3T MR imaging. Invest Ophthalmol Vis Sci. 2013;54:545–54.

    Article  PubMed  Google Scholar 

  16. Wang J, Li T, Sabel BA, et al. Structural brain alterations in primary open angle glaucoma: a 3T MRI study. Sci Rep. 2016;6:18969.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu L, Xie L, Dai C, et al. Progressive thinning of visual cortex in primary open-angle glaucoma of varying severity. PLoS ONE. 2015;10:e121960.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dahnke R, Yotter RA, Gaser C. Cortical thickness and central surface estimation. Neuroimage. 2013;65:336–48.

    Article  PubMed  Google Scholar 

  19. Yotter RA, Dahnke R, Gaser C. Topological correction of brain surface meshes using spherical harmonics. Hum Brain Mapp. 2011;32:1109–24.

    Article  PubMed  Google Scholar 

  20. Potvin O, Dieumegarde L, Duchesne S. Freesurfer cortical normative data for adults using Desikan-Killiany-Tourville and ex vivo protocols. Neuroimage. 2017;156:43–64.

    Article  PubMed  Google Scholar 

  21. Hammers A, Allom R, Koepp MJ, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2010;19:224–47.

    Article  Google Scholar 

  22. Hayes A. Introduction to mediation, moderation, and conditional process analysis. J Educ Meas. 2013;51:335–7.

    Google Scholar 

  23. Toothaker LE. Multiple regression: testing and interpreting interactions. J Oper Res Soc. 1994;45:119–20.

    Google Scholar 

  24. Li C, Cai P, Shi L, et al. Voxel-based morphometry of the visual-related cortex in primary open angle glaucoma. Curr Eye Res. 2012;37:794–802.

    Article  PubMed  Google Scholar 

  25. Born RT, Tootell RBH. Segregation of global and local motion processing in primate middle temporal visual area. Nature. 1993;365:497–9.

    Article  Google Scholar 

  26. Gazzard G, Foster PJ, Devereux JG, et al. Intraocular pressure and visual field loss in primary angle closure and primary open angle glaucomas. Br J Ophthalmol. 2003;87:720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iacoboni M, Woods RP, Lenzi GL, et al. Merging of oculomotor and somatomotor space coding in the human right precentral gyrus. Brain. 1997;120:1635–45.

    Article  PubMed  Google Scholar 

  28. Paus T. Location and function of the human frontal eye-field: a selective review. Neuropsychologia. 1996;34:475–83.

    Article  CAS  PubMed  Google Scholar 

  29. Tehovnic EJ, Sommer MA, Chou I, et al. Eye fields in the frontal lobes of primates. Brain Res Rev. 2000;32:413–48.

    Article  Google Scholar 

  30. Ni Z, Gunraj C, Nelson AJ, et al. Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human. Cereb Cortex. 2009;19:1654–65.

    Article  PubMed  Google Scholar 

  31. Potkin SG, Turner JA, Brown GG, et al. Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr Bull. 2009;35:19–31.

    Article  CAS  PubMed  Google Scholar 

  32. Viswanathan P, Nieder A. Comparison of visual receptive fields in the dorsolateral prefrontal cortex (dorsolateral prefrontal cortex) and ventral intraparietal area (VIP) in macaques. Eur J Neurosci. 2017;46:2702–12.

    Article  PubMed  Google Scholar 

  33. Blatt GJ, Andersen RA, Stoner GR. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol. 1990;299:421–45.

    Article  CAS  PubMed  Google Scholar 

  34. Anzai A, Peng X, Van Essen DC. Neurons in monkey visual area V2 encode combinations of orientations. Nat Neurosci. 2007;10:1313–21.

    Article  CAS  PubMed  Google Scholar 

  35. Johnson PB, Ferraina S, Bianchi L, et al. Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb Cortex. 1996;6:102–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Taishan Scholars Program of Shandong Province (Grant number: TS201712065), Academic Promotion Program of Shandong First Medical University (Grant number: 2019QL009), Natural Science Foundation of Shandong Province (Grant number: ZR2023QH109), and Science and Technology funding from Jinan (Grant number: 2020GXRC018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Wang or Weizhao Lu.

Ethics declarations

Conflict of interest

L. Jing, T. Yan, J. Zhou, Y. Xie, J. Qiu, Y. Wang and W. Lu declare that they have no competing interests.

Additional information

Data Accessibility statement

The data of this study are available upon reasonable request from corresponding authors.

Supplementary Information

62_2023_1351_MOESM1_ESM.docx

Supplementary Tables 1–4 Results of the moderation analysis investigating IOP as a moderator of the association between subject type (HTG-HC) and cortical thickness of the left rostral middle frontal gyrus, left pars triangularis, left postcentral gyrus, left superior temporal gyrus.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, L., Yan, T., Zhou, J. et al. Elevated Intraocular Pressure Moderated Brain Morphometry in High-tension Glaucoma: a Structural MRI Study. Clin Neuroradiol 34, 173–179 (2024). https://doi.org/10.1007/s00062-023-01351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-023-01351-6

Keywords

Navigation