Skip to main content
Log in

Effect of ulinastatin on interleukins and pulmonary function in bypass patients: a meta-analysis of randomized controlled trials

Wirkung von Ulinastatin auf Interleukine und die Lungenfunktion von Bypasspatienten: Eine Metaanalyse randomisierter kontrollierter Studien

  • Review articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

Our aim was to evaluate the effect of urinary trypsin inhibitors (UTI) on interleukin, tumor necrosis factor-α (TNF-α), and polymorphonuclear neutrophil elastase (PMNE) levels as well as on pulmonary function in patients undergoing cardiopulmonary bypass.

Materials and methods

We searched the following databases for relevant studies: PubMed, Medline (Ovid SP), Cochrane Library, Wanfang Data, China Biology Medicine Database, Chinese Periodical Database, China Knowledge Resource Integrated Database, and Chinese Clinical Trial Registry. Two investigators independently collected the data and assessed the quality of each study. RevMan 5.3 was used for the meta-analysis.

Results

In total, 15 randomized controlled trials (646 patients) met the inclusion criteria. There was a significant decrease in TNF-α, interleukin-6 (IL-6), IL-8, and PMNE levels at 6 h and 24 h after UTI treatment and an increase in IL-10 levels; additionally, there was a decrease in respiratory index and an improvement in the oxygenation index. Nevertheless, UTI treatment did not affect the length of intensive care unit stay, alveolar–arterial oxygen partial pressure difference, adverse lung events, or hospital mortality. Because of the high heterogeneity of the included trials, the results should be assessed carefully.

Conclusion

UTI treatment can suppress proinflammatory cytokine elevation and upregulate the release of anti-inflammatory mediators, thereby reducing pulmonary injury and improving pulmonary function after cardiopulmonary bypass.

Zusammenfassung

Hintergrund

Ziel der vorliegenden Studie war die Beurteilung der Wirkung des Urin-Trypsininhibitors (UTI) auf die Werte für Interleukin, Tumornekrosefaktor-α (TNF-α) und Elastase aus polymorphkernigen Neutrophilen („polymorphonuclear neutrophil elastase“, PMNE) sowie auf die Lungenfunktion von Patienten, bei denen eine kardiopulmonale Bypassoperation erfolgte.

Material und Methoden

Folgende Datenbanken wurden nach relevanten Studien durchsucht: PubMed, Medline (Ovid SP), Cochrane Library, Wanfang Database, China Biology Medicine Database, Chinese Periodical Database, China Knowledge Resource Integrated Database und Chinese Clinical Trial Registry. Unabhängig voneinander sammelten 2 Untersucher die Daten und bewerteten die Qualität jeder Studie. Die Software RevMan 5.3 wurde für die Metaanalyse eingesetzt.

Ergebnisse

Insgesamt erfüllten 15 randomisierte kontrollierte Studien (646 Patienten) die Einschlusskriterien. Es fanden sich eine signifikante Abnahme der Werte von TNF-α, Interleukin-6 (IL-6), IL-8 und PMNE 6 h und 24 h nach UTI-Therapie und ein Anstieg der IL-10-Werte; zusätzlich bestand eine Verminderung des respiratorischen Index und eine Verbesserung des Oxygenierungsindex. Trotzdem wirkte sich die UTI-Therapie nicht auf die Länge des Aufenthalts auf der Intensivstation, die alveoloarterielle Sauerstoffpartialdruckdifferenz, unerwünschte Lungenereignisse oder die Krankenhausmortalität aus. Wegen der großen Heterogenität der eingeschlossenen Studien sollten die Ergebnisse sorgfältig geprüft werden.

Schlussfolgerung

Durch eine UTI-Therapie kann die Erhöhung proinflammatorischer Zytokinwerte unterbunden und die Freisetzung antiinflammatorischer Mediatoren heraufreguliert werden, dies kann zur Verminderung von Lungenschädigungen sowie zur Verbesserung der Lungenfunktion nach kardiopulmonalem Bypass führen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rossaint J, Berger C, Van Aken H et al (2012) Cardiopulmonary bypass during cardiac surgery modulates systemic inflammation by affecting different steps of the leukocyte recruitment cascade. PLoS ONE 7:e45738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yuan SM (2015) Postperfusion lung syndrome: respiratory mechanics, respiratory indices and biomarkers. Ann Thorac Med 10:151–157

    Article  PubMed  PubMed Central  Google Scholar 

  3. Linder A, Russell JA (2014) An exciting candidate therapy for sepsis: ulinastatin, a urinary protease inhibitor. Intensive Care Med 40:1164–1167

    Article  PubMed  Google Scholar 

  4. Apostolakis EE, Koletsis EN, Baikoussis NG et al (2010) Strategies to prevent intraoperative lung injury during cardiopulmonary bypass. J Cardiothorac Surg 5:1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wynne R, Botti M (2004) Postoperative pulmonary dysfunction in adults after cardiac surgery with cardiopulmonary bypass: clinical significance and implications for practice. Am J Crit Care 13:384–393

    Article  PubMed  Google Scholar 

  6. Gentile LF, Cuenca AG, Efron PA et al (2012) Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg 72:1491–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang N, Wang F, Wang Y et al (2013) Ulinastatin improves survival of septic mice by suppressing inflammatory response and lymphocyte apoptosis. J Surg Res 182:296–302

    Article  CAS  PubMed  Google Scholar 

  8. Chen J, Wang J, Su C et al (2016) Urinary trypsin inhibitor attenuates LPS-induced endothelial barrier dysfunction by upregulation of vascular endothelial-cadherin expression. Inflamm Res 65:213–224

    Article  CAS  PubMed  Google Scholar 

  9. Luo Y, Che W, Zhao M (2017) Ulinastatin post-treatment attenuates lipopolysaccharide-induced acute lung injury in rats and human alveolar epithelial cells. Int J Mol Med 39:297–306

    Article  CAS  PubMed  Google Scholar 

  10. Ng CS, Wan S (2012) Limiting inflammatory response to cardiopulmonary bypass: pharmaceutical strategies. Curr Opin Pharmacol 12:155–159

    Article  CAS  PubMed  Google Scholar 

  11. Wang LZ, Luo MY, Zhang JS et al (2016) Effect of ulinastatin on serum inflammatory factors in Asian patients with acute pancreatitis before and after treatment: a meta-analysis. Int J Clin Pharmacol Ther 54:890–898

    Article  PubMed  Google Scholar 

  12. Rui M, Duan YY, Zhang XH et al (2012) Urinary trypsin inhibitor attenuates seawater-induced acute lung injury by influencing the activities of nuclear factor-kB and its related inflammatory mediators. Respiration 83:335–343

    Article  CAS  PubMed  Google Scholar 

  13. Ren B, Wu H, Zhu J et al (2006) Ulinastatin attenuates lung ischemia-reperfusion injury in rats by inhibiting tumor necrosis factor alpha. Transplant Proc 38:2777–2779

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Zeng Z, Cao Y et al (2014) Effect of urinary protease inhibitor (ulinastatin) on cardiopulmonary bypass: a meta-analysis for China and Japan. PLoS ONE 9:e113973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Pang XY, Fang CC, Chen YY et al (2016) Effects of ulinastatin on perioperative inflammatory response and pulmonary function in cardiopulmonary bypass patients. Am J Ther 23:e1680–e1689

    Article  PubMed  Google Scholar 

  16. Shi XQ, Wang YH, Li JQ et al (2013) Protective effect of ulinastatin on pulmonary function after cardiopulmonary bypass. Sichuan Da Xue Xue Bao Yi Xue Ban 44:752–755

    CAS  PubMed  Google Scholar 

  17. Nakanishi K, Takeda S, Sakamoto A et al (2006) Effects of ulinastatin treatment on the cardiopulmonary bypass-induced hemodynamic instability and pulmonary dysfunction. Crit Care Med 34:1351–1357

    Article  CAS  PubMed  Google Scholar 

  18. Xu HY, Rong XS, Wang DP et al (2017) Effect of urinary trypsin inhibitor on inflammatory cytokines and organ function in patients with cardiopulmonary bypass. Eur Rev Med Pharmacol Sci 21:2220–2225

    PubMed  Google Scholar 

  19. Zhou Q, Wang G, Gao C et al (2010) Effect of ulinastatin on perioperative inflammatory response to coronary artery bypass grafting with cardiopulmonary bypass. Zhong Nan Da Xue Xue Bao Yi Xue Ban 35:107–110

    CAS  PubMed  Google Scholar 

  20. Bao HJ, Gao BS, Li TC (2006) Influence of ulinastatin on TNF-α, IL-6, IL-8 in patients of mitral valve replacement. Shandong Yi Kan 46(6):6–7

    CAS  Google Scholar 

  21. Wang HM, Dai AL, He W et al (2006) Protective effect of ulinastatin on pulmonary function after cardiopulmonary bypass. Chin J Postgrad Med 29(6):34–35

    CAS  Google Scholar 

  22. Chen C, Li LM, Cao MJ et al (2007) Influence of ulinastatin on lungs in cardopulmonary bypass patients. Chin J Cardiovasc Med 5(2):109–112

    Google Scholar 

  23. Yu XY, Fan LL (2009) Effects of different doses of ulinastatin on inflammatory response and pulmonary function after cardiopulmonary bypass. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 21:664–667

    CAS  PubMed  Google Scholar 

  24. Xu CE, Zou CW, Zhang MY et al (2013) Effects of high-dose ulinastatin on inflammatory response and pulmonary function in patients with type-A aortic dissection after cardiopulmonary bypass under deep hypothermic circulatory arrest. J Cardiothorac Vasc Anesth 27:479–484

    Article  CAS  PubMed  Google Scholar 

  25. Bingyang J, Jinping L, Mingzheng L et al (2007) Effects of urinary protease inhibitor on inflammatory response during on-pump coronary revascularisation. Effect of ulinastatin on inflammatory response. J Cardiovasc Surg (Torino) 48:497–503

    CAS  Google Scholar 

  26. Lv M, Zhang XH, Zhang BM et al (2009) Effects of ulinastain on protecting pulmonary in cardiopulmonary bypass. Chin J Lab Diagn 13(3):369–371

    Google Scholar 

  27. Lin BS, Zhang XH, Zhang BM et al (2008) Effects of ulinastain on protecting pulmonary in elderly patients of mitral valve replacement. Chin J Gerontol 28(24):2457–2458

    Google Scholar 

  28. Zhang JH, Chen JJ (2006) Mechanism of protection of ulinastatin on lung injury during cardiopulmonary bypass. J Clin Pulm Med 21(7):1261–1263

    Google Scholar 

  29. Xu QH, Chang KQ, Chen WP et al (2006) Effect of ulinastatin on inflammatory cytokins levels in bronchoalveolar lavage fluid and pulmonary function in patients undergoing cardiopulmonary bypass. Chin Circ J 21(4):297–300

    Google Scholar 

  30. Yang GDA, Li J, Zhang J, Zhang MZ (2013) Meta-analysis of the clinical efficacy of the septis by treatment of ulinastatin. Zhejiang J Clin Med 15:197–199

    Google Scholar 

  31. Qiu Y, Lin J, Yang Y et al (2015) Lack of efficacy of ulinastatin therapy during cardiopulmonary bypass surgery. Chin Med J 128:3138–3142

    Article  PubMed  PubMed Central  Google Scholar 

  32. Inoue K, Takano H (2010) Urinary trypsin inhibitor as a therapeutic option for endotoxin-related inflammatory disorders. Expert Opin Investig Drugs 19(4):513–520

    Article  CAS  PubMed  Google Scholar 

  33. Song J, Park J, Kim JY et al (2013) Effect of ulinastatin on perioperative organ function and systemic inflammatory reaction during cardiac surgery: a randomized double-blinded study. Korean J Anesthesiol 64:334–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leng YX, Yang SG, Song YH et al (2014) Ulinastatin for acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. World J Crit Care Med 3:34–41

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu D, Yu Z, Yin J et al (2017) Effect of ulinastatin combined with thymosin alpha1 on sepsis: a systematic review and meta-analysis of Chinese and Indian patients. J Crit Care 39:259–266

    Article  CAS  PubMed  Google Scholar 

  36. Boomer JS, To K, Chang KC et al (2011) Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306:2594–2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prashant A, Vishwanath P, Kulkarni P et al (2013) Comparative assessment of cytokines and other inflammatory markers for the early diagnosis of neonatal sepsis-a case control study. PLoS ONE 8:e68426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pan Y, Fang H, Lu F et al (2017) Ulinastatin ameliorates tissue damage of severe acute pancreatitis through modulating regulatory T cells. J Inflamm (Lond) 14:7

    Article  CAS  Google Scholar 

  39. Cao Y, Yang T, Yu S et al (2013) Relationships of adiponectin with markers of systemic inflammation and insulin resistance in infants undergoing open cardiac surgery. Mediators Inflamm 2013:187940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Oh SY, Kim JC, Choi YS et al (2012) Effects of ulinastatin treatment on myocardial and renal injury in patients undergoing aortic valve replacement with cardiopulmonary bypass. Korean J Anesthesiol 62:148–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han D, Shang W, Wang G et al (2015) Ulinastatin and thymosin alpha1-based immunomodulatory strategy for sepsis: a meta-analysis. Int Immunopharmacol 29:377–382

    Article  CAS  PubMed  Google Scholar 

  42. He QL, Zhong F, Ye F et al (2014) Does intraoperative ulinastatin improve postoperative clinical outcomes in patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. Biomed Res Int 2014:630835

    PubMed  PubMed Central  Google Scholar 

  43. Lin Y, Zhu X, Liu F et al (2011) Analysis of risk factors of prolonged intensive care unit stay of critically ill obstetric patients: a 5-year retrospective review in 3 hospitals in Beijing. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 23:449–453

    CAS  PubMed  Google Scholar 

  44. Joskowiak D, Kappert U, Matschke K et al (2013) Prolonged intensive care unit stay of patients after cardiac surgery: initial clinical results and follow-up. Thorac Cardiovasc Surg 61:701–707

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Health and Family Planning Commission Foundation of Hubei province, China (Grant No. WJ2015MB260) and Research Fund for Excellent Dissertation of China Three Gorges University (Grant No. 2018SSPY094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zeng.

Ethics declarations

Conflict of interest

G. He, Q. Li, W. Li, Y. Ruan, X. Xiong, X. Song, and F. Zeng declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Authors’ contributions

Guiyuan He and Qi Li contributed equally to this paper. The identification of titles and abstracts and extracting of data were independently carried out by Guiyuan He and Qi Li. Wenxin Li and Yushu Ruan were responsible for resolving potential disagreement between Guiyuan He and Qi Li. Xiaoqi Xiong and Xinyu Song performed the literature review. All authors contributed to the writing of the draft and approved the final manuscript. The corresponding author, Fanjun Zeng, contributed to the development of the protocol and prepared the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Li, Q., Li, W. et al. Effect of ulinastatin on interleukins and pulmonary function in bypass patients: a meta-analysis of randomized controlled trials. Herz 45, 335–346 (2020). https://doi.org/10.1007/s00059-018-4732-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-018-4732-0

Keywords

Schlüsselwörter

Navigation