Skip to main content
Log in

Subclinical impairment of left ventricular function in diabetic patients with or without obesity

A study based on three-dimensional speckle tracking echocardiography

Subklinische Beeinträchtigung der linksventrikulären Funktion bei Diabetespatienten mit oder ohne Adipositas

Eine Studie auf der Grundlage der 3-D-Speckle-Tracking-Echokardiographie

  • Original article
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Aims

The aim of this study was to investigate subclinical left ventricular (LV) changes between type 2 diabetic patients with or without obesity using three-dimensional speckle-tracking echocardiography (3DSTE).

Methods

A total of 77  type 2 diabetic patients, including 36 subjects with BMI < 25 kg/m2 and 41 subjects with BMI ≥ 25 kg/m2, as well as 40 age- and sex-matched controls (BMI: 18.5 ~ 24.5 kg/m2) were studied. Waist circumference was measured in diabetic patients with a BMI ≥ 25 kg/m2 to determine whether abdominal obesity as a complication was present. Real-time three-dimensional (3D) full volume images of the left ventricle were recorded and analyzed. Left ventricular ejection fraction (LVEF), global longitudinal strain (GLS), global circumferential strain (GCS), global area strain (GAS), and global radial strain (GRS) were calculated and compared.

Results

Compared with the controls, diabetic subjects without overall obesity had significantly lower GCS, GAS, and GRS (p < 0.05), as well as markedly lower GLS (p < 0.001). However, 3D-LVEF and all global strains in diabetic subjects with overall obesity were not only markedly lower compared with controls (p  <  0.002 and p < 0.001), but also significantly lower than those in diabetic subjects without overall obesity (p  <  0.002 and p  <  0.05). HbA1c and BMI showed negative impacts on all strains in diabetic patients. Meanwhile, the diabetic subjects with overall and abdominal obesity had significantly reduced GLS, GCS, GAS, and GRS compared with those with overall obesity only (all p  <  0.05).

Conclusions

Type 2 diabetic patients demonstrated early-stage subclinical LV deformation and dysfunction, whilst coexistent obesity resulted in further damage to myocardial contractility and reduced LVEF. 3DSTE was a sensitive method for detecting these abnormalities.

Zusammenfassung

Ziel

Ziel der Studie war es, subklinische linksventrikuläre (LV) Veränderungen bei Typ-2-Diabetes-Patienten mit oder ohne Adipositas unter Einsatz der dreidimensionalen Speckle-Tracking-Echokardiographie (3DSTE) zu untersuchen.

Methoden

Es wurden 77 Typ-2-Diabetes-Patienten, darunter 36 Teilnehmer mit einem Body-Mass-Index (BMI) < 25 kg/m2 und 41 Teilnehmer mit einem BMI ≥ 25 kg/m2, sowie 40 in Alter und Geschlecht entsprechende Kontrollen (BMI: 18,5 ~ 24,5 kg/m2) untersucht. Ob bei den Diabetespatienten mit einem BMI ≥ 25 kg/m2 die Komplikation einer abdominellen Adipositas vorlag, hing vom Taillenumfang ab. Ein 3-D-Echtzeit-full-Volume-Datensatz des linken Ventrikels wurde dokumentiert und analysiert. Die linksventrikuläre Ejektionsfraktion (LVEF), globale longitudinale Deformation („global longitudinal strain“, GLS), globale zirkumferenzielle Deformation („global circumferential strain“, GCS), globale flächige Deformation („global area strain“, GAS) und globale radiale Deformation („global radial strain“, GRS) wurden berechnet und verglichen.

Ergebnisse

Verglichen mit den Kontrollen wiesen Diabetespatienten ohne allgemeine Adipositas eine signifikant niedrigere GCS, GAS und GRS (p < 0,05) sowie eine deutlich niedrigere GLS auf (p < 0,001). Jedoch waren die 3D-LVEF und alle globalen Deformationen bei Diabetespatienten mit allgemeiner Adipositas nicht nur deutlich niedriger als bei den Kontrollen (p < 0,002 bzw. p < 0,001), sondern auch signifikant niedriger als bei den Diabetespatienten ohne allgemeine Adipositas (p < 0,002 bzw. p < 0,05). Der HbA1c-Wert und der BMI hatten negative Auswirkungen auf alle Deformationen bei Diabetespatienten. Bei den Diabetespatienten mit allgemeiner und abdomineller Adipositas waren GLS, GCS, GAS und GRS im Vergleich zu den Werten bei allgemeiner Adipositas allein signifikant vermindert (alle p < 0,05).

Schlussfolgerung

Die Typ-2-Diabetes-Patienten wiesen eine subklinische LV-Verformung und -Funktionsstörung im frühen Stadium auf, und eine begleitende Adipositas führte zu einer weiteren Schädigung der Myokardkontraktilität sowie zu einer verminderten LVEF. Die 3DSTE stellte sich als sensitives Verfahren zur Erkennung dieser Auffälligkeiten heraus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Whalley GA, Gusso S, Hofman P et al (2009) Structural and functional cardiac abnormalities in adolescent girls with poorly controlled type 2 diabetes. Diabetes Care 32:883–888

    Article  PubMed Central  PubMed  Google Scholar 

  2. Alpert MA, Lambert CR, Panayiotou H et al (1995) Relation of duration of morbid obesity to left ventricular mass, systolic function, and diastolic filling, and effect of weight loss. Am J Cardiol 76:1194–1197

    Article  CAS  PubMed  Google Scholar 

  3. Ryden L, Grant PJ, Anker SD et al (2013) ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 34:3035–3087

    Article  PubMed  Google Scholar 

  4. Miyoshi H, Oishi Y, Mizuguchi Y et al (2014) Contribution of obesity to left atrial and left ventricular dysfunction in asymptomatic patients with hypertension: a two-dimensional speckle-tracking echocardiographic study. J Am Soc Hypertens 8:54–63

    Article  PubMed  Google Scholar 

  5. Geetha L, Deepa M, Anjana RM et al (2011) Prevalence and clinical profile of metabolic obesity and phenotypic obesity in Asian Indians. J Diabetes Sci Technol 5:439–446

    Article  PubMed Central  PubMed  Google Scholar 

  6. Du T, Sun X, Yin P et al (2013) Increasing trends in central obesity among Chinese adults with normal body mass index, 1993–2009. BMC Public Health 13:327

    Article  PubMed Central  PubMed  Google Scholar 

  7. Niu J, Seo DC (2014) Central obesity and hypertension in Chinese adults: a 12-year longitudinal examination. Prev Med 62:113–118

    Article  PubMed  Google Scholar 

  8. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223

    Article  PubMed  Google Scholar 

  9. Scholte AJ, Nucifora G, Delgado V et al (2011) Subclinical left ventricular dysfunction and coronary atherosclerosis in asymptomatic patients with type 2 diabetes. Eur J Echocardiogr 12:148–155

    Article  PubMed  Google Scholar 

  10. Nakai H, Tacheuchi M, Nishikage T et al (2009) Subclinical left ventricular dysfunction in asymptomatic diabetic patients assessed by two—dimensional speckle tracking echocardiography: correlation with diabetic duration. Eur J Echocardiogr 10:926–932

    Article  PubMed  Google Scholar 

  11. Pala S, Esen O, Akcakoyun M et al (2010) Rosiglitazone, but not pioglitazone, improves myocardial systolic function in type 2 diabetic patients: a tissue Doppler study. Echocardiography 27:512–518

    Article  PubMed  Google Scholar 

  12. Zoroufian A, Razmi T, Taghavi-Shavazi M et al (2014) Evaluation of subclinical left ventricular dysfunction in diabetic patients: longitudinal strain velocities and left ventricular dyssynchrony by two-dimensional speckle tracking echocardiography study. Echocardiography 31:456–463

    Article  PubMed  Google Scholar 

  13. Ernande L, Bergerot C, Girerd N et al (2014) Impaired longitudinal myocardial strain alteration is associated with left ventricular remodeling in asymptomatic patients with type 2 diabetes mellitus. J Am Soc Echocardiogr 27:479–488

    Article  PubMed  Google Scholar 

  14. Helle-Valle T, Crosby J, Edvardsen T et al (2005) New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation 112:3149–3156

    Article  PubMed  Google Scholar 

  15. Breaker SJ (2000) The importance of long axis ventricular function. Heart 84:577–578

    Article  Google Scholar 

  16. Yan GH, Wang M, Yiu KH et al (2012) Subclinical left ventricular dysfunction revealed by circumferential 2D strain imaging in patients with coronary artery disease and fragmented QRS complex. Heart Rhythm 9:928–935

    Article  PubMed  Google Scholar 

  17. Deng YB, Liu R, Wu YH et al (2010) Evaluation of short-axis and long-axis myocardial function with two-dimensional strain echocardiography in patients with different degrees of coronary artery stenosis. Ultrasound Med Biol 36:227–233

    Article  PubMed  Google Scholar 

  18. Zhang X, Wei X, Liang Y et al (2013) Differential changes of left ventricular myocardial deformation in diabetic patients with controlled and uncontrolled blood glucose: a three-dimensional speckle-tracking echocardiography—based study. J Am Soc Echocardiogr 26:499–506

    Article  CAS  PubMed  Google Scholar 

  19. Deng Y, Alharthi MS, Thota VR et al (2010) Evaluation of left ventricular rotation in obese subjects by velocity vector imaging. Eur J Echocardiogr 11:424–428

    Article  PubMed  Google Scholar 

  20. Cil H, Bulur S, Turker Y et al (2012) Impact of body mass index on left ventricular diastolic dysfunction. Echocardiography 29:647–651

    Article  PubMed  Google Scholar 

  21. Mehta SK, Richards N, Lorber R et al (2009) Abdominal obesity, waist circumference, body mass index, and echocardiographic measures in children and adolescents. Congenit Heart Dis 4:338–347

    Article  PubMed  Google Scholar 

  22. Hao PP, Chen YG, Liu YP et al (2013) Association of plasma angiotensin-(1–7) level and left ventricular function in patients with type 2 diabetes mellitus. PLoS One 8:e62788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Vinereanu D, Madler CF, Gherghinescu C et al (2011) Cumulative impact of cardiovascular risk factors on regional left ventricular function and reserve: progressive long-axis dysfunction with compensatory radial changes. Echocardiography 28:813–820

    Article  PubMed  Google Scholar 

  24. Marwick TH (2006) Diabetic heart disease. Heart 92:296–300

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Kaczmarczyk SJ, Andrikopoulos S, Favaloro J et al (2003) Threshold effects of glucose transporter-4 (GLUT4) deficiency on cardiac glucose uptake and development of hypertrophy. J Mol Endocrinol 31:449–459

    Article  CAS  PubMed  Google Scholar 

  26. Sheikh AQ, Hurley JR, Huang W et al (2012) Diabetes alters intracellular calcium transients in cardiac endothelial cells. PLoS One 7:e36840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Dillmann WH (1989) Diabetes and thyroid-hormone-induced changes in cardiac function and their molecular basis. Annu Rev Med 40:373–394

    Article  CAS  PubMed  Google Scholar 

  28. Connelly KA, Kelly DJ, Zhang Y et al (2009) Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy. Circ Heart Fail 2:129–137

    Article  CAS  PubMed  Google Scholar 

  29. MacGowan GA, Shapiro EP, Azhari H et al (1997) Noninvasive measurement shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy. Circulation 96:535–541

    Article  CAS  PubMed  Google Scholar 

  30. Li CM, Li C, Bai WJ et al (2013) Value of three-dimensional speckle-tracking in detecting left ventricular dysfunction in patients with aortic valvular diseases. J Am Soc Echocardiogr 26:1245–1252

    Article  PubMed  Google Scholar 

  31. Kissebah AH, Krakower GR (1994) Regional adiposity and morbidity. Physiol Rev 74:761–811

    CAS  PubMed  Google Scholar 

  32. Huxley R, Mendis S, Zheleznyakov E et al (2010) Body mass index, waist circumference and waist: hip ratio as predictors of cardiovascular risk—a review of the literature. Eur J Clin Nutr 16–22

  33. Mottillo S, Filion KB, Genest J et al (2010) The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol 56:1113–1132

    Article  PubMed  Google Scholar 

  34. Gong HP, Tan HW, Fang NN et al (2009) Impaired left ventricular systolic and diastolic function in patients with metabolic syndrome as assessed by strain and strain rate imaging. Diabetes Res Clin Pract 83:300–307

    Article  PubMed  Google Scholar 

  35. Crendal E, Walther G, Vinet A et al (2013) Myocardial deformation and twist mechanics in adults with metabolic syndrome: impact of cumulative metabolic burden. Obesity (Silver Spring) 21:E679–E686

  36. Almeida AL, Teixido-Tura G, Choi EY et al (2014) Metabolic syndrome, strain, and reduced myocardial function: multi-ethnic study of atherosclerosis. Arq Bras Cardiol 102:327–335

    PubMed Central  PubMed  Google Scholar 

  37. Tadic M, Cuspidi C, Majstorovic A et al (2014) Does the metabolic syndrome impact left-ventricular mechanics? A two-dimensional speckle tracking study. J Hypertens 32:1870–1878

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. Q. Wang, Y. Gao, K. Tan, and P. Li state that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Consent was obtained from all patients identifiable from images or other information within the manuscript. In the case of underage patients, consent was obtained from a parent or legal guardian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Gao, Y., Tan, K. et al. Subclinical impairment of left ventricular function in diabetic patients with or without obesity. Herz 40 (Suppl 3), 260–268 (2015). https://doi.org/10.1007/s00059-014-4186-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-014-4186-y

Keywords

Schlüsselwörter

Navigation