Skip to main content
Log in

Collembola gut passage shapes microbial communities in faecal pellets but not viability of dietary algal cells

  • Short Communication
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Microarthropods are known as vectors for soil microorganisms, predominantly fungi. This laboratory study uses the widespread unicellular green algae Chlorella vulgaris as model to assess the role of Collembola in algal dispersal and to determine the effects of gut passage on propagation. Living algal cells were observed in 70 % of the faecal pellets of Folsomia candida, Heteromurus nitidus and Protaphorura fimata. Moreover, marker fatty acids for green algae, i.e. 16:2ω6,9 and 16:3ω3,6,9, were consistently detected in the pellets. Compared to the algal diet, the high content of methyl-branched total lipid fatty acid (TLFA) with hydroxyl substitution indicated microbial colonisation during gut passage. The TLFA profile of faeces revealed no species-specific differences but similar changes in microbial communities over the duration of feeding, indicating comparable indigenous bacteria and colonisation mechanisms during gut passage. In sum, faecal pellets of soil microarthropods such as Collembola can act as a vector for both dietary algae and specific gut-associated microorganisms, with the latter likely involved in resource degradation inside and outside the gut habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1
Fig. 2

References

  • Borkott H, Insam H (1990) Symbiosis with bacteria enhances the use of chitin by springtail, Folsomia candida (Collembola). Biol Fertil Soils 9:126–129

    Article  CAS  Google Scholar 

  • Broday PA (1979) Feeding studies on the collembolan Cryptopygus antarcticus Willem at Signy Island, South Orkney Island. Brit Antarct Surv B 48:37–46

    Google Scholar 

  • Buse T, Ruess L, Filser J (2013) New trophic biomarker for Collembola reared on algal diets. Pedobiologia 56:153–159

    Article  Google Scholar 

  • Christiansen K (1964) Bionomics of Collembola. Annu Rev Entomol 9:147–178

    Article  Google Scholar 

  • Davidson MM, Broday PA (1996) Analysis of cut contents of Gomphiocephalus hodgsoni Carpenter (Collembola: Hypogastruidae) at Cape geology, Antarctica. Polar Biol 16:463–467

    Article  Google Scholar 

  • Dromph KM (2001) Dispersal of entomopathogenic fungi by collembolans. Soil Biol Biochem 33:2047–2051

    Article  CAS  Google Scholar 

  • Dungait JAJ, Briones MJI, Bol R, Evershed RP (2008) Enhancing the understanding of earthworm feeding behaviour via the use of fatty acid δ13C values determined by gas chromatography-combustion-isotope ratio mass spectrometry. Rapid Commun Mass Sp 22:1643–1652

    Article  CAS  Google Scholar 

  • Fountain MT, Hopkin SP (2005) Folsomia candida (Collembola): a standard soil arthropod. Annu Rev Entomol 50:201–222

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Brandón M, Aira M, Lores M, Dominguez J (2011) Epigeic earthworms exert a bottleneck effect on microbial communities through gut associated processes. PLoS One 6:e24786. doi:10.1371/journal.pone.0024786

    Article  PubMed Central  PubMed  Google Scholar 

  • Hubert J, Lukešová A (2001) Feeding of panphytophagous oribatid mite Scheloribates laevigatus (Acari: Oribatida) on cyanobacterial and algal diets in laboratory experiments. Appl Soil Ecol 16:77–83

    Article  Google Scholar 

  • Hunt ME, Floyed GL, Stout BB (1979) Soil algae in field and forest environments. Ecology 60:362–375

    Article  CAS  Google Scholar 

  • Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function and taxonomic significance. Microbiol Rev 55:288–302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knapp BA, Podmirseg SM, Seeber J, Meyer E, Insam H (2009) Diet-related composition of the gut microbiota of Lumbricus rubellus as revealed by a molecular fingerprinting technique and cloning. Soil Biol Biochem 41:2299–2307

    Article  CAS  Google Scholar 

  • Lilleskov EA, Bruns TD (2005) Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97:762–769

    Article  PubMed  Google Scholar 

  • Meier FA, Scherrer S, Honegger R (2002) Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. Biol J Linn Soc 76:259–268

    Article  Google Scholar 

  • Metting B (1981) The systematics and ecology of soil algae. Bot Rev 47:195–312

    Article  CAS  Google Scholar 

  • Rindi F, Allali HA, Lam DW, López-Bautista JM (2011) An overview of the biodiversity and biogeography of terrestrial green algae. In: Rescigno V, Maletta S (eds) Biodiversity hotspots. Nova Science Publishers Inc., New York, pp 105–122

    Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Ruess L, Chamberlain PM (2010) The fat that matters: soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol Biochem 42:1898–1910

    Article  CAS  Google Scholar 

  • Ruess L, Schütz K, Haubert D, Häggblom MM, Kandeler E, Scheu S (2005) Application of lipid analysis to understand trophic interactions in soil. Ecology 86:2075–2082

    Article  Google Scholar 

  • Ruess L, Schütz K, Migge-Kleian S, Häggblom MM, Kandeler E, Scheu S (2007) Lipid composition of Collembola and their food resources in deciduous forest stands: implications for feeding strategies. Soil Biol Biochem 39:1990–2000

    Article  CAS  Google Scholar 

  • Scheu S, Folger M (2004) Single and mixed diets in Collembola: effects on reproduction and stable isotope fractionation. Funct Ecol 18:94–102

    Article  Google Scholar 

  • Stefaniak O, Seniczak S (1981) The effect of fungal diet on the development of Oppia nitens (Acri, Orbatei) and on the microflora of its alimentary tract. Pedobiologia 21:202–210

    Google Scholar 

  • Stromberger ME, Keith AM, Schmidt O (2012) Distinct microbial and faunal communities and translocated carbon in Lumbricus terrestris drilopshere. Soil Biol Biochem 46:155–162

    Article  CAS  Google Scholar 

  • Tebbe CC, Czarnetzki AB, Thimm T (2006) Collembola as a habitat for microorganisms. In: König H, Varma A (eds) Soil biology, vol 6., Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 133–153

    Google Scholar 

  • Thimm T, Hoffmann A, Borkott H, Munch JC, Tebbe CC (1998) The gut of the soil microarthropod Folsomia candida (Collembola) is a frequently changeable but selective habitat and vector for microorganisms. Appl Environ Microb 64:2660–2669

    CAS  Google Scholar 

  • Tiunov AV, Scheu S (2005) Arbuscular Mycorrhiza and Collembola interact in affecting community composition of saprotrophic microfungi. Oecologia 142:636–642

    Article  PubMed  Google Scholar 

  • Vegter JJ (1983) Food and habitat specialization in coexisting springtails (Collembola, Entomobryidae). Pedobiologia 25:253–262

    Google Scholar 

  • Verhoef HA, Prast JE, Verweij RA (1988) Relative importance of fungi and algae in the diet and nitrogen nutrition of Orchisella cincta (L.) and Tomocerus minor (Lubbock) (Collembola). Funct Ecol 2:195–201

    Article  Google Scholar 

  • Visser S (1985) Role of soil invertebrates in determining the composition of soil microbial communities. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecology interactions in soil. Blackwell Scientific Publications, Oxford, pp 297–317

    Google Scholar 

  • Williams RH, Whipps JM, Cooke RC (1998) Role of soil mesofauna in dispersal of Coniothyrium minitans: mechanisms of transmission. Soil Biol Biochem 30:1937–1945

    Article  CAS  Google Scholar 

  • Wolf MM, Rockett CL (1984) Habitat changes affecting bacterial composition in the alimentary canal of oribatid mites (Acari: Oribatida). Int J Acarol 10:209–215

    Article  Google Scholar 

  • Wolters W (1985) Resource allocation in Tomocerus flavescens (Insecta, Collembola): a study with C-14-labelled food. Oecologia 65:229–235

    Article  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccarides in the characterization of microbial communities in soil: a review. Biol Fert Soils 29:111–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank W. Wosnoik for his helpful comments in statistical analysing, P. Heese for her excellent technical assistance, R. Nehring for his much-appreciated help with fatty acid analysis by GC-mass spectrometry and J. Seeger for linguistic correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Buse.

Additional information

Handling Editor: Michael Heethoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buse, T., Ruess, L. & Filser, J. Collembola gut passage shapes microbial communities in faecal pellets but not viability of dietary algal cells. Chemoecology 24, 79–84 (2014). https://doi.org/10.1007/s00049-013-0145-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-013-0145-y

Keywords

Navigation