Skip to main content

Advertisement

Log in

Evolution and challenges of opioids in pain management: Understanding mechanisms and exploring strategies for safer analgesics

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Opioids traced back to ancient civilizations, have evolved in their usage for acute and chronic pain treatment. Their interaction with the endogenous opioidergic system modulates pain thresholds, neurological functions, and beyond. The discovery of opioid receptor subtypes (MOP, KOP, DOP, and NOP) revolutionized pharmacology, shedding light on their distinctive roles and signaling pathways. However, despite the efficacy of opioids, complications such as tolerance, addiction, and adverse behavioral effects pose significant challenges. This article explores the mechanisms of opioid activity in cells, emphasizing the role of biased agonism in the analgesic and adverse effects of opioids. We further reviewed strategies to mitigate the side effects, including the development of biased agonists targeting G-proteins, exploration of opioid receptor heterodimers, allosteric activation, and selective targeting of receptor splice variants. Insights into the sodium channel’s role and bitopic modulators also offer new avenues for drug design. The quest to develop safer and more effective analgesics while minimizing adverse effects drives ongoing research. The comprehensive understanding of opioid receptors and innovative strategies offer hope for addressing the opioid crisis and advancing pain management paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AC:

Adenylyl cyclase

ACTH:

Adrenocorticotropin

AQP3:

Aquaporin-3

cAMP:

Cyclic adenosine monophosphate

CNS:

Central nervous system

CPP:

Conditioned place preference

CRH:

Corticotropin-releasing hormone

DHEA:

Dehydroepiandrosterone

DHEAS:

Dehydroepiandrosterone sulfates

DOP:

Delta opioid receptor

DRG:

Dorsal root ganglion

DSt:

Dorsal striatum

GABA:

Gamma-aminobutyric acid

GI:

Gastrointestinal

GlyRα3:

Glycine receptor type α3

GnRH:

Gonadotrophin-releasing hormone

GPCR:

G protein-coupled receptor

GRK:

G-protein receptor kinase

IRP:

Inwardly rectifying potassium

KO:

Knock out

KOP:

Kappa opioid receptor

LC:

Locus coeruleus

LH:

Luteinizing hormone

M3G:

Morphine 3-glucuronide

MDORH:

Mu-delta opioid receptor heterodimer

MOP:

Mu opioid receptor

NAc:

Nucleus accumbens

NAM:

Negative allosteric modulator

NK1:

Neurokinin-1

NMDA:

N-methyl-D-aspartate

NRM:

Nucleus raphe magnus

OE:

Opioid endocrinopathy

OPIAD:

Opioid-induced androgen deficiency

OPRM1:

Opioid receptor mu 1

OUD:

Opioid use disorder

PAG:

Periaqueductal grey

PAM:

Positive allosteric modulator

PKC:

Protein kinase C

TM:

Transmembrane

TRPV1:

Transient receptor potential vanilloid 1

VSCC:

Voltage-sensitive calcium channels

VTA:

Ventral tegmental area

WHO:

World Health Organization

References

  1. Benyamin R, Trescot AM, Datta S, Buenaventura RM, Adlaka R, Sehgal N, et al. Opioid complications and side effects. Pain Physician. 2008;11:S105.

    Article  PubMed  Google Scholar 

  2. Aragón-Poce F, Martı́nez-Fernández E, Márquez-Espinós C, Pérez A, Mora R and Torres L. History of opium. in International Congress Series. Elsevier. 2002.

  3. Goodrich JT. History of spine surgery in the ancient and medieval worlds. Neurosurg focus. 2004;16:1–13.

    Article  Google Scholar 

  4. McDonald J, Lambert D. Opioid receptors. Contin Educ Anaesth Crit Care Pain. 2005;5:22–25.

    Article  Google Scholar 

  5. Zhang JJ, Song CG, Dai JM, Li L, Yang XM, Chen ZN. Mechanism of opioid addiction and its intervention therapy: Focusing on the reward circuitry and mu‐opioid receptor. MedComm. 2022;3:e148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Madariaga-Mazón A, Marmolejo-Valencia AF, Li Y, Toll L, Houghten RA, Martinez-Mayorga K. Mu-Opioid receptor biased ligands: A safer and painless discovery of analgesics? Drug Discov today. 2017;22:1719–29.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature. 2011;477:549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Watson H. Biological membranes. Essays Biochem. 2015;59:43–69.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z, Hilger D, et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell. 2015;161:1101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chan HS, McCarthy D, Li J, Palczewski K, Yuan S. Designing safer analgesics via μ-opioid receptor pathways. Trends Pharmacol Sci. 2017;38:1016–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trang T, Al-Hasani R, Salvemini D, Salter MW, Gutstein H, Cahill CM. Pain and poppies: The good, the bad, and the ugly of opioid analgesics. J Neurosci. 2015;35:13879–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luttrell LM, Lefkowitz RJ. The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci. 2002;115:455–65.

    Article  CAS  PubMed  Google Scholar 

  13. Christie M. Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol. 2008;154:384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev. 2001;81:299–43.

    Article  CAS  PubMed  Google Scholar 

  15. Connor M, Osborne PB, Christie MJ. μ‐Opioid receptor desensitization: Is morphine different? Br J Pharmacol. 2004;143:685–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin F-T. Enhanced morphine analgesia in mice lacking β-arrestin 2. Science. 1999;286:2495–8.

    Article  CAS  PubMed  Google Scholar 

  17. Raehal KM, Walker JK, Bohn LM. Morphine side effects in β-arrestin 2 knockout mice. J Pharmacol Exp Ther. 2005;314:1195–201.

    Article  CAS  PubMed  Google Scholar 

  18. Bohn LM, Gainetdinov RR, Lin F-T, Lefkowitz RJ, Caron MG. μ-Opioid receptor desensitization by β-arrestin-2 determines morphine tolerance but not dependence. Nature. 2000;408:720–3.

    Article  CAS  PubMed  Google Scholar 

  19. Hughes J, Smith T, Kosterlitz H, Fothergill LA, Morgan B, Morris H. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975;258:577–9.

    Article  CAS  PubMed  Google Scholar 

  20. Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley P, Portoghese P, et al. International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol Rev. 1996;48:567–92.

    CAS  PubMed  Google Scholar 

  21. Mogil JS, Grisel JE. Transgenic studies of pain. Pain. 1998;77:107–28.

    Article  CAS  PubMed  Google Scholar 

  22. Akil H, Owens C, Gutstein H, Taylor L, Curran E, Watson S. Endogenous opioids: Overview and current issues. Drug Alcohol Depend. 1998;51:127–40.

    Article  CAS  PubMed  Google Scholar 

  23. Wadenberg ML. A review of the properties of Spiradoline: A potent and selective k‐opioid receptor agonist. CNS Drug Rev. 2003;9:187–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walsh SL, Strain EC, Abreu ME, Bigelow GE. Enadoline, a selective kappa opioid agonist: Comparison with butorphanol and hydromorphone in humans. Psychopharmacology. 2001;157:151–62.

    Article  CAS  PubMed  Google Scholar 

  25. Abbadie C, Abbadie GW. Endorphins and their receptors. In: Encyclopedia of the human brain. Elsevier; 2002. pp 193–200. https://doi.org/10.1016/B0-12-227210-2/00137-0.

  26. El Daibani A, Che T. Spotlight on nociceptin/orphanin FQ receptor in the treatment of pain. Molecules. 2022;27:595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meunier J-C, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature. 1995;377:532–5.

    Article  CAS  PubMed  Google Scholar 

  28. Reinscheid RK, Nothacker H-P, Bourson A, Ardati A, Henningsen RA, Bunzow JR, et al. Orphanin FQ: A neuropeptide that activates an opioidlike G protein-coupled receptor. Science. 1995;270:792–4.

    Article  CAS  PubMed  Google Scholar 

  29. Mollereau C, Moisand C, Butour J-L, Parmentier M, Meunier J-C. Replacement of Gln280 by His in TM6 of the human ORL1 receptor increases affinity but reduces intrinsic activity of opioids. FEBS Lett. 1996;395:17–21.

    Article  CAS  PubMed  Google Scholar 

  30. Pan ZZ, Hirakawa N, Fields HL. A cellular mechanism for the bidirectional pain-modulating actions of orphanin FQ/nociceptin. Neuron. 2000;26:515–22.

    Article  CAS  PubMed  Google Scholar 

  31. Mollereau C, Simons M-J, Soularue P, Liners F, Vassart G, Meunier J-C, et al. Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene. Proc Natl Acad Sci. 1996;93:8666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nothacker H-P, Reinscheid RK, Mansour A, Henningsen RA, Ardati A, Monsma F Jr, et al. Primary structure and tissue distribution of the orphanin FQ precursor. Proc Natl Acad Sci. 1996;93:8677–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Toll L, Bruchas MR, Cox BM, Zaveri NT. Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol Rev 2016;68:419–57.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cox BM, Christie MJ, Devi L, Toll L, Traynor JR. Challenges for opioid receptor nomenclature: IUPHAR Review 9. Br J Pharmacol. 2015;172:317–23.

    Article  CAS  PubMed  Google Scholar 

  35. Paul AK, Smith CM, Rahmatullah M, Nissapatorn V, Wilairatana P, Spetea M, et al. Opioid analgesia and opioid-induced adverse effects: A review. Pharmaceuticals. 2021;14:1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Woolf CJ, et al., Towards a mechanism-based classification of pain? LWW 1998. 227–29.

  37. Collett B. Opioid tolerance: the clinical perspective. Br J Anaesth. 1998;81:58–68.

    Article  CAS  PubMed  Google Scholar 

  38. Cepeda-Benito A, Davis KW, Reynoso JT, Harraid JH. Associative and behavioral tolerance to the analgesic effects of nicotine in rats: Tail-flick and paw-lick assays. Psychopharmacology. 2005;180:224–33.

    Article  CAS  PubMed  Google Scholar 

  39. Labianca R, Sarzi-Puttini P, Zuccaro SM, Cherubino P, Vellucci R, Fornasari D. Adverse effects associated with non-opioid and opioid treatment in patients with chronic pain. Clin Drug Investig. 2012;32:53–63.

    Article  CAS  PubMed  Google Scholar 

  40. Juurlink DN, Dhalla IA. Dependence and addiction during chronic opioid therapy. J Med Toxicol. 2012;8:393–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ballantyne JC, LaForge KS. Opioid dependence and addiction during opioid treatment of chronic pain. Pain. 2007;129:235–55.

    Article  CAS  PubMed  Google Scholar 

  42. Nestler EJ, Aghajanian GK. Molecular and cellular basis of addiction. Science. 1997;278:58–63.

    Article  CAS  PubMed  Google Scholar 

  43. Counts SE, Mufson EJ. Locus coeruleus. Hum Nerv Syst. 2012;3:425–38.

    Article  Google Scholar 

  44. Kosten TR, George TP. The neurobiology of opioid dependence: Implications for treatment. Sci Pract Perspect. 2002;1:13.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J. The mechanisms involved in morphine addiction: an overview. Int J Mol Sci. 2019;20:4302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stephanou A, Fitzharris P, Knight R, Lightman S. Characteristics and kinetics of proopiomelanocortin mRNA expression by human leucocytes. Brain Behav Immun. 1991;5:319–27.

    Article  CAS  PubMed  Google Scholar 

  47. Peterson PK, Molitor TW, Chao CC. The opioid–cytokine connection. J Neuroimmunol. 1998;83:63–69.

    Article  CAS  PubMed  Google Scholar 

  48. Chuang T, Killam K, Chuang L, Kung H, Sheng W, Chao C, et al. Mu opioid receptor gene expression in immune cells. Biochem Biophys Res Commun. 1995;216:922–30.

    Article  CAS  PubMed  Google Scholar 

  49. Streicher JM, Bilsky EJ. Peripherally acting μ-opioid receptor antagonists for the treatment of opioid-related side effects: mechanism of action and clinical implications. J Pharm Pract. 2018;31:658–69.

    Article  PubMed  Google Scholar 

  50. Camilleri M. Opioid-induced constipation: challenges and therapeutic opportunities. J Am Coll Gastroenterol. 2011;106:835–42.

    Article  CAS  Google Scholar 

  51. Imam MZ, Kuo A, Ghassabian S, Smith MT. Progress in understanding mechanisms of opioid-induced gastrointestinal adverse effects and respiratory depression. Neuropharmacology. 2018;131:238–55.

    Article  CAS  PubMed  Google Scholar 

  52. Kon R, Ikarashi N, Hayakawa A, Haga Y, Fueki A, Kusunoki Y, et al. Morphine-induced constipation develops with increased aquaporin-3 expression in the colon via increased serotonin secretion. Toxicol Sci. 2015;145:337–47.

    Article  CAS  PubMed  Google Scholar 

  53. Akbarali H, Inkisar A, Dewey W. Site and mechanism of morphine tolerance in the gastrointestinal tract. Neurogastroenterol Motil. 2014;26:1361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Swegle JM, Logemann C. Management of common opioid-induced adverse effects. Am Fam Physician. 2006;74:1347–54.

    PubMed  Google Scholar 

  55. Cherny N, Ripamonti C, Pereira J, Davis C, Fallon M, McQuay H, et al. Strategies to manage the adverse effects of oral morphine: an evidence-based report. J Clin Oncol. 2001;19:2542–54.

    Article  CAS  PubMed  Google Scholar 

  56. Daniell HW. Hypogonadism in men consuming sustained-action oral opioids. J Pain. 2002;3:377–84.

    Article  PubMed  Google Scholar 

  57. Daniell HW. Opioid endocrinopathy in women consuming prescribed sustained-action opioids for control of nonmalignant pain. J Pain. 2008;9:28–36.

    Article  CAS  PubMed  Google Scholar 

  58. Daniell HW. DHEAS deficiency during consumption of sustained-action prescribed opioids: evidence for opioid-induced inhibition of adrenal androgen production. J Pain. 2006;7:901–7.

    Article  CAS  PubMed  Google Scholar 

  59. Daniell HW, Lentz R, Mazer NA. Open-label pilot study of testosterone patch therapy in men with opioid-induced androgen deficiency. J Pain. 2006;7:200–10.

    Article  CAS  PubMed  Google Scholar 

  60. Facchinetti F, Comitini G, Petraglia F, Volpe A, Genazzani A. Reduced estriol and dehydroepiandrosterone sulphate plasma levels in methadone-addicted pregnant women. Eur J Obstet Gynecol Reprod Biol. 1986;23:67–73.

    Article  CAS  PubMed  Google Scholar 

  61. Rajagopal A, Vassilopoulou-Sellin R, Palmer JL, Kaur G, Bruera E. Hypogonadism and sexual dysfunction in male cancer survivors receiving chronic opioid therapy. J pain Symptom Manag. 2003;26:1055–61.

    Article  CAS  Google Scholar 

  62. Oltmanns K, Fehm H, Peters A. Chronic fentanyl application induces adrenocortical insufficiency. J Intern Med. 2005;257:478–80.

    Article  CAS  PubMed  Google Scholar 

  63. Hemmings R, Fox G, Tolis G. Effect of morphine on the hypothalamic-pituitary axis in postmenopausal women. Fertil Steril. 1982;37:389–91.

    Article  CAS  PubMed  Google Scholar 

  64. Petraglia F, Porro C, Facchinetti F, Cicoli C, Bertellini E, Volpe A, et al. Opioid control of LH secretion in humans: menstrual cycle, menopause and aging reduce effect of naloxone but not of morphine. Life Sci. 1986;38:2103–10.

    Article  CAS  PubMed  Google Scholar 

  65. Abs R, Verhelst J, Maeyaert J, Van Buyten J-P, Opsomer F, Adriaensen H, et al. Acker, Endocrine consequences of long-term intrathecal administration of opioids. J Clin Endocrinol Metab. 2000;85:2215–22.

    Article  CAS  PubMed  Google Scholar 

  66. Pake JA, Penn RD, Ryan WG. Altered sexual function and decreased testosterone in patients receiving intraspinal opioids. J Pain Symptom Manag. 1994;9:126–31.

    Article  Google Scholar 

  67. Mendelson JH, Mello NK. Plasma testosterone levels during chronic heroin use and protracted abstinence; A study of Hong Kong addicts. Clin Pharmacol Ther. 1975;17:529–33.

    Article  CAS  PubMed  Google Scholar 

  68. Mendelson JH, Meyer RE, Ellingboe J, Mirin SM, McDougle M. Effects of heroin and methadone on plasma cortisol and testosterone. J Pharmacol Exp Ther. 1975;195:296–302.

    CAS  PubMed  Google Scholar 

  69. Delitala G, Grossman A, Besser G. The participation of hypothalamic dopamine in morphine‐induced prolactin release in man. Clin Endocrinol. 1983;19:437–44.

    Article  CAS  Google Scholar 

  70. Vermeulen A, Deslypere J, Kaufman J. Influence of antiopioids on luteinizing hormone pulsatility in aging men. J Clin Endocrinol Metab. 1989;68:68–72.

    Article  CAS  PubMed  Google Scholar 

  71. Raff H, Norton AJ, Flemma RJ, Findling JW. Inhibition of the adrenocorticotropin response to surgery in humans: interaction between dexamethasone and fentanyl. J Clin Endocrinol Metab. 1987;65:295–8.

    Article  CAS  PubMed  Google Scholar 

  72. Hall G, Lacoumenta S, Hart G, Burrin J. Site of action of fentanyl in inhibiting the pituitary-adrenal response to surgery in man. Br J Anaesth. 1990;65:251–3.

    Article  CAS  PubMed  Google Scholar 

  73. Facchinetti F, Volpe A, Farci G, Petraglia F, Porro CA, Barbieri G, et al. Hypothalamus-pituitary-adrenal axis of heroin addicts. Drug Alcohol Depend. 1985;15:361–6.

    Article  CAS  PubMed  Google Scholar 

  74. Bliesener N, Albrecht S, Schwager A, Weckbecker K, Lichtermann D, Klingmuller D. Plasma testosterone and sexual function in men receiving buprenorphine maintenance for opioid dependence. J Clin Endocrinol Metab. 2005;90:203–6.

    Article  CAS  PubMed  Google Scholar 

  75. Moore RA, McQuay HJ. Prevalence of opioid adverse events in chronic non-malignant pain: systematic review of randomised trials of oral opioids. Arthritis Res Ther. 2005;7:R1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Watcha MF, White PF. Postoperative nausea and vomiting. Its etiology, treatment, and prevention. Anesthesiology. 1992;77:162–84.

    Article  CAS  PubMed  Google Scholar 

  77. Lehnen N, Heuser F, Sağlam M, Schulz CM, Wagner KJ, Taki M, et al. Opioid-induced nausea involves a vestibular problem preventable by head-rest. PLoS One. 2015;10:e0135263.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rojas C, Slusher BS. Mechanisms and latest clinical studies of new NK1 receptor antagonists for chemotherapy-induced nausea and vomiting: Rolapitant and NEPA (netupitant/palonosetron). Cancer Treat Rev. 2015;41:904–13.

    Article  CAS  PubMed  Google Scholar 

  79. Rojas C, Raje M, Tsukamoto T, Slusher BS. Molecular mechanisms of 5-HT3 and NK1 receptor antagonists in prevention of emesis. Eur J Pharmacol. 2014;722:26–37.

    Article  CAS  PubMed  Google Scholar 

  80. Koju RB, Gurung BS, Dongol Y. Prophylactic administration of ondansetron in prevention of intrathecal morphine-induced pruritus and post-operative nausea and vomiting in patients undergoing caesarean section. BMC Anesthesiol. 2015;15:1–6.

    Article  Google Scholar 

  81. Ashby MA, Martin P, Jackson KA. Opioid substitution to reduce adverse effects in cancer pain management. Med J Aust. 1999;170:68–71.

    Article  CAS  PubMed  Google Scholar 

  82. Bruera E, Suarez-Almazor M. Opioid rotation for toxicity reduction in terminal cancer patients. J Pain Symptom Manage. 1995;10:378–84.

    Article  PubMed  Google Scholar 

  83. Mercadante S, Villari P, Ferrera P. Burst ketamine to reverse opioid tolerance in cancer pain. J Pain Symptom Manage. 2003;25:302–5.

    Article  PubMed  Google Scholar 

  84. Mercadante S, Arcuri E. Hyperalgesia and opioid switching. Am J Hosp Palliat Med®. 2005;22:291–4.

    Article  Google Scholar 

  85. Mao J, Sung B, Ji R-R, Lim G. Neuronal apoptosis associated with morphine tolerance: evidence for an opioid-induced neurotoxic mechanism. J Neurosci. 2002;22:7650–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mercadante S, Ferrera P, Villari P, Arcuri E. Hyperalgesia: an emerging iatrogenic syndrome. J Pain Symptom Manage. 2003;26:769–75.

    Article  PubMed  Google Scholar 

  87. Dogrul A, Bilsky EJ, Ossipov MH, Lai J, Porreca F. Spinal L-type calcium channel blockade abolishes opioid-induced sensory hypersensitivity and antinociceptive tolerance. Anesth Analg. 2005;101:1730–5.

    Article  CAS  PubMed  Google Scholar 

  88. Mao J, Price DD, Mayer DJ. Mechanisms of hyperalgesian and morphine tolerance: a current view of their possible interactions. Pain. 1995;62:259–74.

    Article  CAS  PubMed  Google Scholar 

  89. Sultan P, Gutierrez MC, Carvalho B. Neuraxial morphine and respiratory depression: finding the right balance. Drugs. 2011;71:1807–19.

    Article  CAS  PubMed  Google Scholar 

  90. Kuo A, Wyse B, Meutermans W, Smith M. In vivo profiling of seven common opioids for antinociception, constipation and respiratory depression: no two opioids have the same profile. Br J Pharmacol. 2015;172:532–48.

    Article  CAS  PubMed  Google Scholar 

  91. Boom M, Niesters M, Sarton E, Aarts L, Smith TW, Dahan A. Non-analgesic effects of opioids: opioid-induced respiratory depression. Curr Pharm Des. 2012;18:5994–6004.

    Article  CAS  PubMed  Google Scholar 

  92. Kamei J, Ohsawa M, Hayashi S-S, Nakanishi Y. Effect of chronic pain on morphine-induced respiratory depression in mice. Neuroscience. 2011;174:224–33.

    Article  CAS  PubMed  Google Scholar 

  93. Hill R, Santhakumar R, Dewey W, Kelly E, Henderson G. Fentanyl depression of respiration: comparison with heroin and morphine. Br J Pharmacol. 2020;177:254–65.

    Article  CAS  PubMed  Google Scholar 

  94. Manzke T, Guenther U, Ponimaskin EG, Haller M, Dutschmann M, Schwarzacher S, et al. 5-HT4 (a) receptors avert opioid-induced breathing depression without loss of analgesia. Science. 2003;301:226–29.

    Article  CAS  PubMed  Google Scholar 

  95. Pattinson KT. Opioids and the control of respiration. Br J Anaesth. 2008;100:747–58.

    Article  CAS  PubMed  Google Scholar 

  96. Manzke T, Niebert M, Koch U, Caley A, Vogelgesang S, Bischoff A, et al. Die von Serotoninrezeptor 1A modulierte Dephosphorylierung des Glyzinrezeptors α3 Ein neuer molekularer Mechanismus der Atmungskontrolle zur Kompensation opioidinduzierter Atemdepression ohne Verlust der Analgesie [Serotonin receptor 1A-modulated dephosphorylation of glycine receptor α3: A new molecular mechanism of breathing control for compensation of opioid-induced respiratory depression without loss of analgesia]. Der Schmerz. 2011;25:272–81.

    Article  CAS  PubMed  Google Scholar 

  97. Byas-Smith MG, Chapman SL, Reed B, Cotsonis G. The effect of opioids on driving and psychomotor performance in patients with chronic pain. Clin J Pain. 2005;21:345–52.

    Article  PubMed  Google Scholar 

  98. Ahmedzai S. New approaches to pain control in patients with cancer. Eur J Cancer. 1997;33:S8–14.

    Article  CAS  PubMed  Google Scholar 

  99. Bruera E, Miller MJ, Macmillan K, Kuehn N. Neuropsychological effects of methylphenidate in patients receiving a continuous infusion of narcotics for cancer pain. Pain. 1992;48:163–66.

    Article  PubMed  Google Scholar 

  100. Moore P, Dimsdale J. Opioids, sleep, and cancer-related fatigue. Med Hypotheses. 2002;58:77–82.

    Article  CAS  PubMed  Google Scholar 

  101. Varga BR, Streicher JM, Majumdar S. Strategies towards safer opioid analgesics—A review of old and upcoming targets. Br J Pharmacol. 2023;180:975–93.

    Article  CAS  PubMed  Google Scholar 

  102. Bohn LM, Gainetdinov RR, Sotnikova TD, Medvedev IO, Lefkowitz RJ, Dykstra LA, et al. Enhanced rewarding properties of morphine, but not cocaine, in βarrestin-2 knock-out mice. J Neurosci. 2003;23:10265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Raehal KM, Bohn LM. The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics. Neuropharmacology. 2011;60:58–65.

    Article  CAS  PubMed  Google Scholar 

  104. Ananthan S, Saini SK, Dersch CM, Xu H, McGlinchey N, Giuvelis D, et al. 14-Alkoxy-and 14-acyloxypyridomorphinans: μ agonist/δ antagonist opioid analgesics with diminished tolerance and dependence side effects. J Med Chem. 2012;55:8350–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rozenfeld R, Devi LA. Receptor heterodimerization leads to a switch in signaling: β-arrestin2-mediated ERK activation by μ-δ opioid receptor heterodimers. FASEB J: Off Publ Fed Am Soc Exp Biol. 2007;21:2455.

    Article  CAS  Google Scholar 

  106. Décaillot FM, Rozenfeld R, Gupta A, Devi LA. Cell surface targeting of μ-δ opioid receptor heterodimers by RTP4. Proc Natl Acad Sci. 2008;105:16045–50.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Fujita W, Yokote M, Gomes I, Gupta A, Ueda H, Devi LA. Regulation of an opioid receptor chaperone protein, RTP4, by morphine. Mol Pharmacol. 2019;95:11–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Burford NT, Clark MJ, Wehrman TS, Gerritz SW, Banks M, O’Connell J, et al. Discovery of positive allosteric modulators and silent allosteric modulators of the μ-opioid receptor. Proc Natl Acad Sci. 2013;110:10830–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Livingston KE, Traynor JR. Disruption of the Na+ ion binding site as a mechanism for positive allosteric modulation of the mu-opioid receptor. Proc Natl Acad Sci. 2014;111:18369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bisignano P, Burford NT, Shang Y, Marlow B, Livingston KE, Fenton AM, et al. Ligand-based discovery of a new scaffold for allosteric modulation of the μ-opioid receptor. J Chem Inf Model. 2015;55:1836–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stanczyk MA, Livingston KE, Chang L, Weinberg ZY, Puthenveedu MA, Traynor JR. The δ‐opioid receptor positive allosteric modulator BMS 986187 is a G‐protein‐biased allosteric agonist. Br J Pharmacol. 2019;176:1649–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pasternak GW, Childers SR, Pan YX. Emerging insights into mu opioid pharmacology. Handb. Exp. Pharmacol. 2020;258:89–125.

    Article  CAS  PubMed  Google Scholar 

  113. Narayan A, Hunkele A, Xu J, Bassoni DL, Pasternak GW, Pan Y-X. Mu opioids induce biased signaling at the full-length seven transmembrane C-terminal splice variants of the mu opioid receptor gene, Oprm1. Cell Mol Neurobiol. 2021;41:1059–74.

    Article  CAS  PubMed  Google Scholar 

  114. Xu J, Xu M, Brown T, Rossi GC, Hurd YL, Inturrisi CE, et al. Stabilization of the μ-opioid receptor by truncated single transmembrane splice variants through a chaperone-like action. J Biol Chem. 2013;288:21211–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Grinnell SG, Majumdar S, Narayan A, Le Rouzic V, Ansonoff M, Pintar JE, et al. Pharmacologic characterization in the rat of a potent analgesic lacking respiratory depression, IBNtxA. J Pharmacol Exp Ther. 2014;350:710–18.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Majumdar S, Subrath J, Le Rouzic V, Polikar L, Burgman M, Nagakura K, et al. Synthesis and evaluation of aryl-naloxamide opiate analgesics targeting truncated exon 11-associated μ opioid receptor (MOR-1) splice variants. J Med Chem. 2012;55:6352–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wieskopf JS, Pan Y-X, Marcovitz J, Tuttle AH, Majumdar S, Pidakala J, et al. Broad-spectrum analgesic efficacy of IBNtxA is mediated by exon 11-associated splice variants of the mu-opioid receptor gene. PAIN®. 2014;155:2063–70.

    Article  CAS  PubMed  Google Scholar 

  118. Majumdar S, Grinnell S, Le Rouzic V, Burgman M, Polikar L, Ansonoff M, et al. Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects. Proc Natl Acad Sci. 2011;108:19778–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zarzycka B, Zaidi SA, Roth BL, Katritch V. Harnessing ion-binding sites for GPCR pharmacology. Pharmacol Rev. 2019;71:571–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hori T, Okuno T, Hirata K, Yamashita K, Kawano Y, Yamamoto M, et al. Na+-mimicking ligands stabilize the inactive state of leukotriene B4 receptor BLT1. Nat Chem Biol. 2018;14:262–69.

    Article  CAS  PubMed  Google Scholar 

  121. Isberg V, De Graaf C, Bortolato A, Cherezov V, Katritch V, Marshall FH, et al. Generic GPCR residue numbers–aligning topology maps while minding the gaps. Trends Pharmacol Sci. 2015;36:22–31.

    Article  CAS  PubMed  Google Scholar 

  122. Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC. Allosteric sodium in class A GPCR signaling. Trends Biochem Sci. 2014;39:233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu JJ, Horst R, Katritch V, Stevens RC, Wüthrich K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science. 2012;335:1106–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rahmeh R, Damian M, Cottet M, Orcel H, Mendre C, Durroux T, et al. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc Natl Acad Sci. 2012;109:6733–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zha J, He J, Wu C, Zhang M, Liu X, Zhang J. Designing drugs and chemical probes with the dualsteric approach. Chem Soc Rev. 2023; https://doi.org/10.1039/d3cs00650f.

  126. Faouzi A, Wang H, Zaidi SA, DiBerto JF, Che T, Qu Q, et al. Structure-based design of bitopic ligands for the µ-opioid receptor. Nature. 2023;613:767–74.

    Article  CAS  PubMed  Google Scholar 

  127. Wang X, Bao C, Li Z, Yue L, Hu L. Side effects of opioids are ameliorated by regulating TRPV1 receptors. Int J Environ Res Public Health. 2022;19:2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen Y, Geis C, Sommer C. Activation of TRPV1 contributes to morphine tolerance: involvement of the mitogen-activated protein kinase signaling pathway. J Neurosci. 2008;28:5836–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hong S-I, Nguyen T-L, Ma S-X, Kim H-C, Lee S-Y, Jang C-G. TRPV1 modulates morphine-induced conditioned place preference via p38 MAPK in the nucleus accumbens. Behav Brain Res. 2017;334:26–33.

    Article  CAS  PubMed  Google Scholar 

  130. Nguyen T-L, Kwon S-H, Hong S-I, Ma S-X, Jung Y-H, Hwang J-Y, et al. Transient receptor potential vanilloid type 1 channel may modulate opioid reward. Neuropsychopharmacology. 2014;39:2414–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Adamczyk P, Miszkiel J, McCreary AC, Filip M, Papp M, Przegaliński E. The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats. Brain Res. 2012;1444:45–54.

    Article  CAS  PubMed  Google Scholar 

  132. Blednov Y, Harris R. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol. Neuropharmacology. 2009;56:814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ma SX, Kwon SH, Seo JY, Hwang JY, Hong SI, Kim HC, et al. Impairment of opiate‐mediated behaviors by the selective TRPV1 antagonist SB366791. Addict Biol. 2017;22:1817–28.

    Article  CAS  PubMed  Google Scholar 

  134. Dharminder Singh AS. Naltrexone. Treasure Island (FL): StatPearls Publishing; 2023.

    Google Scholar 

  135. Rachna Kumar OV, Abdolreza S. Buprenorphine. Treasure Island: StatPearls Publishing; 2023.

    Google Scholar 

  136. Anderson IB, Kearney TE. Medicine cabinet: use of methadone. West J Med. 2000;172:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. NIDA, Naloxone DrugFacts. 2022; https://nida.nih.gov/publications/drugfacts/naloxone.

  138. Deweerdt S. The natural history of an epidemic. Nature. 2019;573:S10–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I extend my sincere gratitude to the esteemed faculty members of the Department of Nursing Sciences at Babcock University, whose exceptional mentorship has been instrumental in shaping the content of this publication. Their commitment to fostering critical thinking skills has served as a source of inspiration, contributing significantly to the development of this scholarly work. In addition, I wish to express my heartfelt appreciation to my husband, Mr. Adewale Bakare, whose unwavering support has been a pillar throughout this academic journey. My gratitude extends to my parents, Mr. Alfred Alaba Durojaye and Mrs. Modupe Oluwatoyin Durojaye, for their constant encouragement and support. I am also thankful for the solidarity of my siblings, friends, and colleagues, whose collective encouragement has been invaluable. Lastly, I acknowledge and appreciate the management of The Alpha Assisted Reproductive Klinic for their enduring love and support throughout the years. Their encouragement has played a pivotal role in the realization of my academic pursuits.

Author contributions

TTB: Conceptualization, literature review, writing of first draft, and manuscript editing. HOU: Literature review, validation, and manuscript editing. LNG: Literature review and manuscript editing. SC: Literature review and manuscript editing. JNA: Literature review. AVA: Literature review. SPE: Manuscript editing. CMD: Literature review. GOI: Manuscript editing. AGO: Preparation of figures and manuscript editing. OAD: Conceptualization, preparation of figures, manuscript writing, and editing. All authors have read and approved the manuscript.

Funding

The authors received no funding for this project from any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olanrewaju Ayodeji Durojaye.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakare, T.T., Uzoeto, H.O., Gonlepa, L.N. et al. Evolution and challenges of opioids in pain management: Understanding mechanisms and exploring strategies for safer analgesics. Med Chem Res 33, 563–579 (2024). https://doi.org/10.1007/s00044-024-03207-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-024-03207-1

Keywords

Navigation