Skip to main content
Log in

Synthesis, in-silico based virtual screening,anti-cancer potential of novel1,2,3-triazole-thiadiazole hybrid derivatives as Aurora kinase A (ARK-A) and Extracellular regulated kinase 2 (ERK2) dual inhibitors

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

As part of our ongoing efforts to produce promising cytotoxic agents, the novel compounds, 5-(4-(diethylamino)-2-((1-substitutedphenyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-1,3,4-thiadiazol-2-yl)pyrrolidine-2,5-dione derivatives (9a-l) were developed, synthesized, and characterized using several analytical techniques, including 1H NMR, 13C NMR, and LC-MS. New series of 1,2,3-triazole and thiadiazole molecular hybrids synthesized were evaluated for their anti-cancer activity against human esophageal carcinoma cell line KYSE-450 and human pancreatic carcinoma cell line MIA PaCa-2 cells. According to cytotoxic evaluation data, compounds 9b, 9i, 9j, and 9l exhibited potential cytotoxic activity against KYSE-450 and MIAPaCa-2 cells. Compound 9j had more significant anti-cancer potential than the standard employed across all compounds evaluated. The remaining compounds exhibited moderate to weak anti-proliferative potential. In-vitro kinase inhibition of compound 9j was significantly more effective against ARK-A and ERK2 enzymes, indicating its dual inhibition potential. Docking analysis showed that 9k, 9j, and 9i have substantial docking scores with the ARK-A receptor, indicating the presence of strong binding affinities. Significant binding interactions between molecules 9j and 9h and the ERK2 receptor suggest an inhibitory effect. Hence the compounds are promising dual inhibitors of ARK-A/ERK2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Popova EA, Protas AV, Trifonov RE. Tetrazole derivatives as promising anticancer agents. Anticancer Agents Med Chem. 2018;17. https://doi.org/10.2174/1871520617666170327143148.

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  3. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer.

  4. Sahoo SK, Ahmad MN, Kaul G, Nanduri S, Dasgupta A, Chopra S. et al. Synthesis and evaluation of triazole congeners of nitro-benzothiazinones potentially active against drug-resistant mycobacterium tuberculosis demonstrating bactericidal efficacy. RSC Med Chem. 2022;13:585–93. https://doi.org/10.1039/D1MD00387A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gour J, Gatadi S, Pooladanda V, Ghouse SM, Malasala S, Madhavi YV. et al. Facile synthesis of 1,2,3-triazole-fused indolo- and pyrrolo[1,4]diazepines, DNA-binding and evaluation of their anticancer activity. Bioorg Chem. 2019;93:103306. https://doi.org/10.1016/j.bioorg.2019.103306.

    Article  CAS  PubMed  Google Scholar 

  6. Stacy DM, Le Quement ST, Hansen CL, Clausen JW, Tolker-Nielsen T, Brummond JW, et al. Synthesis and biological evaluation of triazole-containing N-Acyl homoserine lactones as quorum sensing modulators. Org Biomol Chem. 2013;11:938–54. https://doi.org/10.1039/C2OB27155A.

    Article  CAS  PubMed  Google Scholar 

  7. Zuo Z, Liu X, Qian X, Zeng T, Sang N, Liu H. et al. Bifunctional naphtho[2,3- d][1,2,3]triazole-4,9-dione compounds exhibit antitumor effects in vitro and in vivo by inhibiting dihydroorotate dehydrogenase and inducing reactive oxygen species production. J Med Chem. 2020;63:7633–52. https://doi.org/10.1021/acs.jmedchem.0c00512.

  8. Mohammed JH, Mohammed AI, Abass SJ. Antibacterial activity importance of 1, 2, 3-triazole and 1, 2, 4-triazole by click chemistry. J Chem Chem Sci. 2015;5:317–324.

    Google Scholar 

  9. Mareddy J, Nallapati SB, Anireddy J, Devi YP, Mangamoori LN, Kapavarapu R. et al. Synthesis and biological evaluation of nimesulide based new class of triazole derivatives as potential PDE4B inhibitors against cancer cells. Bioorg Med Chem Lett. 2013;23:6721–7. https://doi.org/10.1016/j.bmcl.2013.10.035.

    Article  CAS  PubMed  Google Scholar 

  10. Kumbhare RM, Dadmal TL, Ramaiah MJ, Kishore KSV, Pushpa Valli SNCVL, Tiwari SK. et al. Synthesis and anti-cancer evaluation of novel triazole linked N-(Pyrimidin-2-Yl)Benzo[d]Thiazol-2-amine derivatives as inhibitors of cell survival proteins and inducers of apoptosis in MCF-7 breast cancer cells. Bioorg Med Chem Lett. 2015;25:654–8. https://doi.org/10.1016/j.bmcl.2014.11.083.

    Article  CAS  PubMed  Google Scholar 

  11. Shaikh MH, Subhedar DD, Nawale L, Sarkar D, Khan FAK, Sangshetti JN. et al. 1,2,3-triazole derivatives as antitubercular agents: synthesis, biological evaluation, and molecular docking study. Med Chem Commun. 2015;6:1104–16. https://doi.org/10.1039/C5MD00057B.

    Article  CAS  Google Scholar 

  12. Pasko MT, Piscitelli SC, Van Slooten AD. Fluconazole: a new triazole antifungal agent. DICP. 1990;24:860–7. https://doi.org/10.1177/106002809002400914.

    Article  CAS  PubMed  Google Scholar 

  13. Lass-Flörl C. Triazole antifungal agents in invasive fungal infections. Drugs. 2011;71:2405–19. https://doi.org/10.2165/11596540-000000000-00000.

    Article  PubMed  Google Scholar 

  14. Bangalore PK, Vagolu SK, Bollikanda RK, Veeragoni DK, Choudante PC, Misra S. et al. Usnic acid enaminone-coupled 1,2,3-triazoles as antibacterial and antitubercular agents. J Nat Prod. 2020;83:26–35. https://doi.org/10.1021/acs.jnatprod.9b00475.

    Article  CAS  PubMed  Google Scholar 

  15. Aouad MR, Mayaba MM, Naqvi A, Bardaweel SK, Al-blew FF, Messali M. et al. Design, synthesis, in silico and in vitro antimicrobial screenings of novel 1,2,4-triazoles carrying 1,2,3-triazole scaffold with lipophilic side chain tether. Chem Cent J. 2017;11:117. https://doi.org/10.1186/s13065-017-0347-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Głowacka IE, Balzarini J, Wróblewski AE. Design, synthesis, antiviral, and cytotoxic evaluation of novel phosphorylated 1,2,3-triazoles as acyclic nucleotide analogues. Nucleosides Nucleotides Nucleic Acids. 2012;31:293–318. https://doi.org/10.1080/15257770.2012.662611.

    Article  CAS  PubMed  Google Scholar 

  17. Alvarez R, Velázquez S, San-Félix A, Aquaro S, De Clercq E, Perno CF. et al. 1,2,3-Triazole-[2’,5’-Bis-O-(Tert-Butyldimethylsilyl)-Beta-D- Ribofuranosyl]-3’-Spiro-5”-(4”-Amino-1”,2”-Oxathiole 2”,2”-Dioxide) (TSAO) analogues: synthesis and anti-HIV-1 activity. J Med Chem. 1994;37:4185–94. https://doi.org/10.1021/jm00050a015.

  18. Poulsen S-A, Wilkinson BL, Innocenti A, Vullo D, Supuran CT. Inhibition of human mitochondrial carbonic anhydrases VA and VB with Para-(4-Phenyltriazole-1-Yl)-benzenesulfonamide derivatives. Bioorg Med Chem Lett. 2008;18:4624–7. https://doi.org/10.1016/j.bmcl.2008.07.010.

    Article  CAS  PubMed  Google Scholar 

  19. Rajan S, Puri S, Kumar D, Babu MH, Shankar K, Varshney S. et al. Novel indole, and triazole based hybrid molecules exhibit potent anti-adipogenic and antidyslipidemic activity by activating Wnt3a/β-Catenin pathway. Eur J Med Chem. 2018;143:1345–60. https://doi.org/10.1016/j.ejmech.2017.10.034.

    Article  CAS  PubMed  Google Scholar 

  20. Praveenkumar E, Gurrapu N, Kumar Kolluri P, Yerragunta V, Reddy Kunduru B, Subhashini NJP. Synthesis, anti-diabetic evaluation and molecular docking studies of 4-(1- aryl-1H-1, 2, 3-triazol-4-yl)-1,4-dihydropyridine derivatives as novel 11-β hydroxysteroid dehydrogenase-1 (11β- HSD1) inhibitors. Bioorg Chem. 2019;90:103056. https://doi.org/10.1016/j.bioorg.2019.103056.

    Article  CAS  PubMed  Google Scholar 

  21. Supuran CT, Scozzafava A. Carbonic anhydrase inhibitors. Curr Med Chem Immunol Endocr Metab Agents. 2001;1:61–97. https://doi.org/10.2174/1568013013359131.

    Article  CAS  Google Scholar 

  22. Subhashini NJP, Praveen Kumar E, Gurrapu N, Yerragunt V. Design and synthesis of imidazole-1, 2,3-triazoles hybrid compounds by the microwave-assisted method: evaluation as an antioxidant and antimicrobial agents and molecular docking studies. J Mol Struct. 2019;1180:618–28. https://doi.org/10.1016/j.molstruc.2018.11.029.

    Article  CAS  Google Scholar 

  23. Matysiak J, Malinski Z. [2-(2,4-Dihydroxyphenyl)-1,3,4-thiadiazole analogues: antifungal activity in vitro against Candida species]. Bioorg Khim. 2007;33:640–7. https://doi.org/10.1134/s1068162007060106.

  24. Matysiak J, Opolski A. Synthesis and antiproliferative activity of N-substituted 2-Amino-5-(2,4-Dihydroxyphenyl)-1,3,4-thiadiazoles. Bioorg Med Chem. 2006;14:4483–9. https://doi.org/10.1016/j.bmc.2006.02.027.

    Article  CAS  PubMed  Google Scholar 

  25. Rzeski W, Matysiak J, Kandefer-Szerszeń M. Anti-cancer, neuroprotective activities and computational studies of 2-amino-1,3,4-thiadiazole based compound. Bioorg Med Chem. 2007;15:3201–7. https://doi.org/10.1016/j.bmc.2007.02.041.

    Article  CAS  PubMed  Google Scholar 

  26. Tahghighi A, Razmi S, Mahdavi M, Foroumadi P, Ardestani SK, Emami S. et al. Synthesis and anti-leishmanial activity of 5-(5-Nitrofuran-2-Yl)-1,3,4-thiadiazol-2-amines containing N-[(1-Benzyl-1H-1,2,3-Triazol-4-Yl)Methyl] moieties. Eur J Med Chem. 2012;50:124–8. https://doi.org/10.1016/j.ejmech.2012.01.046.

  27. Rajak H, Singour P, Kharya MD, Mishra P. A novel series of 2,5-disubstituted 1,3,4-oxadiazoles: synthesis and SAR study for their anticonvulsant activity. Chem Biol Drug Des. 2011;77:152–8. https://doi.org/10.1111/j.1747-0285.2010.01066

    Article  CAS  PubMed  Google Scholar 

  28. Hatvate NT, Ghodse SM, Telvekar VN. Metal-free synthesis of 2-aminothiadiazoles via TBHP-Mediated oxidative C-S bond formation. Synth Commun. 2018. https://doi.org/10.1080/00397911.2017.1398330.

  29. Pawar, Pratap Y, Kulkarni, Reshma B, Kalure, Swati U. Synthesis and pharmacological screening of some N-substituted pyrrolidine-2,5-dione derivatives as potential antidepressant agentsInternational. J Pharm Front Res. 2012;2:1–13.

    CAS  Google Scholar 

  30. Nalawade J, Shinde A, Chavan A, Patil S, Suryavanshi M, Modak M, et al. Synthesis of new thiazolyl-pyrazolyl-1,2,3-triazole derivatives as potential antimicrobial agents. Eur J Med Chem. 2019;179:649–59.

    Article  CAS  PubMed  Google Scholar 

  31. Cascioferro S, Li Petri G, Parrino B, El Hassouni B, Carbone D, Arizza V. et al. 3-(6-Phenylimidazo [2,1-b][1,3,4]thiadiazol-2-yl)-1H-indole derivatives as new anticancer agents in the treatment of pancreatic ductal adenocarcinoma. Molecules. 2020;25:329. https://doi.org/10.3390/molecules25020329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu Z-H, Gu X-J, Shi K-Z, Li X, Chen D-D, Chen L. Accessing anti-human lung tumor cell line (A549) potential of newer 3,5-disubstituted pyrazoline analogs. Arab J Chem. 2017;10:624–30. https://doi.org/10.1016/j.arabjc.2014.11.002.

    Article  CAS  Google Scholar 

  33. S AK, Madderla S, Dharavath R, Nalaparaju N, Katta R, Gundu S. et al. Microwave assisted synthesis of N-substituted acridine-1,8-dione derivatives: evaluation of antimicrobial activity. J Heterocycl Chem. 2022;59:1180–90. https://doi.org/10.1002/jhet.4458.

    Article  CAS  Google Scholar 

  34. Abdulfatai U, Uzairu A, Uba S. Molecular docking and quantitative structure-activity relationship study of anticonvulsant activity of aminobenzothiazole derivatives. Beni-Suef Univ J Basic Appl Sci. 2018;7:204–14. https://doi.org/10.1016/j.bjbas.2017.11.002.

    Article  Google Scholar 

  35. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009. https://doi.org/10.1002/jcc.21334.

  36. Nowakowski J, Cronin CN, McRee DE, Knuth MW, Nelson CG, Pavletich NP. et al. Structures of the cancer-related aurora-A, FAK, and EphA2 protein kinases from nano volume crystallography. Structure. 2002;10:1659–67. https://doi.org/10.1016/S0969-2126(02)00907-3.

    Article  CAS  PubMed  Google Scholar 

  37. Lim DY, Shin SH, Lee M-H, Malakhova M, Kurinov I, Wu Q. et al. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer. Oncotarget. 2016;7:35001–14. https://doi.org/10.18632/oncotarget.9223.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All the authors thank the Head, Department of Chemistry, Osmania University, Hyderabad, for providing laboratory facilities. We thank Central Facilities and Research Development (CFRD) analytical team for providing spectral analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laxma Reddy Kotha or Satyanarayana Sirasani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bontha, L., Edigi, P.K., Dokala, A. et al. Synthesis, in-silico based virtual screening,anti-cancer potential of novel1,2,3-triazole-thiadiazole hybrid derivatives as Aurora kinase A (ARK-A) and Extracellular regulated kinase 2 (ERK2) dual inhibitors. Med Chem Res 32, 2419–2431 (2023). https://doi.org/10.1007/s00044-023-03132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03132-9

Keywords

Navigation