Skip to main content
Log in

Combination with a FtsZ inhibitor potentiates the in vivo efficacy of oxacillin against methicillin-resistant Staphylococcus aureus

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Oxacillin is a first-line antibiotic for the treatment of methicillin-sensitive Staphylococcus aureus (MSSA) infections but is ineffective against methicillin-resistant S. aureus (MRSA) due to resistance. Here we present results showing that co-administering oxacillin with the FtsZ-targeting prodrug TXA709 renders oxacillin efficacious against MRSA. The combination of oxacillin and the active product of TXA709 (TXA707) is associated with synergistic bactericidal activity against clinical isolates of MRSA that are resistant to current standard-of-care antibiotics. We show that MRSA cells treated with oxacillin in combination with TXA707 exhibit morphological characteristics and PBP2 mislocalization behavior similar to that exhibited by MSSA cells treated with oxacillin alone. Co-administration with TXA709 renders oxacillin efficacious in mouse models of both systemic and tissue infection with MRSA, with this efficacy being observed at human-equivalent doses of oxacillin well below that recommended for daily adult use. Pharmacokinetic evaluations in mice reveal that co-administration with TXA709 also increases total exposure to oxacillin. Viewed as a whole, our results highlight the clinical potential of repurposing oxacillin to treat MRSA infections through combination with a FtsZ inhibitor.

Oxacillin Kills Vancomycin-Resistant Staphylococcus aureus (VRSA) When Combined with the FtsZ Inhibitor TXA707

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lowy FD. Staphylococcus aureus Infections. N. Eng J Med. 1998;339:520–32. https://doi.org/10.1056/nejm199808203390806.

    Article  CAS  Google Scholar 

  2. Rayner C, Munckhof WJ. Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus. Int Med J. 2005;35:S3–16. https://doi.org/10.1111/j.1444-0903.2005.00976.x.

    Article  CAS  Google Scholar 

  3. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–61. https://doi.org/10.1128/CMR.00134-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7:629–41. https://doi.org/10.1038/nrmicro2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deck DH, Winston LG. Beta-Lactam & Other Cell Wall- & Membrane-Active Antibiotics In: Katzung BG, Trevor AJ, editors. Basic and Clinical Pharmacology. 13th ed. New York, NY: McGraw-Hill; 2015. p. 769–87.

  6. Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell. 2007;128:1037–50. https://doi.org/10.1016/j.cell.2007.03.004.

    Article  CAS  PubMed  Google Scholar 

  7. Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Investig. 2003;111:1265–73.

    Article  CAS  Google Scholar 

  8. Rolinson GN, Geddes AM. The 50th Anniversary of the Discovery of 6-Aminopenicillanic Acid (6-APA. Int J Antimicrob Agents. 2007;29:3–8. https://doi.org/10.1016/j.ijantimicag.2006.09.003.

  9. Sykes R. The 2009 Garrod Lecture: the evolution of antimicrobial resistance: a Darwinian perspective. J Antimicrob Chemother. 2010;65:1842–52. https://doi.org/10.1093/jac/dkq217.

    Article  CAS  PubMed  Google Scholar 

  10. Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America. Clin Infect Dis. 2014;59:e10–52. https://doi.org/10.1093/cid/ciu444.

    Article  PubMed  Google Scholar 

  11. Moellering RC Jr. MRSA: the first half century. J Antimicrob Chemother. 2012;67:4–11. https://doi.org/10.1093/jac/dkr437.

    Article  CAS  PubMed  Google Scholar 

  12. Rodvold KA, McConeghy KW. Methicillin-resistant Staphylococcus aureus therapy: past, present, and future. Clin Infect Dis. 2014;58:S20–S7. https://doi.org/10.1093/cid/cit614.

    Article  CAS  PubMed  Google Scholar 

  13. McDanel JS, Roghmann MC, Perencevich EN, Ohl ME, Goto M, Livorsi DJ, et al. Comparative effectiveness of Cefazolin versus Nafcillin or Oxacillin for treatment of Methicillin-Susceptible Staphylococcus aureus infections complicated by bacteremia: a nationwide cohort study. Clin Infect Dis. 2017;65:100–6. https://doi.org/10.1093/cid/cix287.

    Article  PubMed  Google Scholar 

  14. Viehman JA, Oleksiuk LM, Sheridan KR, Byers KE, He P, Falcione BA, et al. Adverse events lead to drug discontinuation more commonly among patients who receive Nafcillin than among those who receive Oxacillin. Antimicrob Agents Chemother. 2016;60:3090–5. https://doi.org/10.1128/AAC.03122-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown D. Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void. Nat Rev Drug Disco. 2015;14:821–32. https://doi.org/10.1038/nrd4675.

    Article  CAS  Google Scholar 

  16. Roemer T, Boone C. Systems-level antimicrobial drug and drug synergy discovery. Nat Chem Biol. 2013;9:222–31. https://doi.org/10.1038/nchembio.1205.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng W, Sun W, Simeonov A. Drug repurposing screens and synergistic drug-combinations for infectious diseases. Br J Pharmacol. 2017 https://doi.org/10.1111/bph.13895.

  18. Ferrer-González E, Kaul M, Parhi AK, LaVoie EJ, Pilch DS. β-Lactam antibiotics with a high affinity for PBP2 act synergistically with the FtsZ-targeting agent TXA707 against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2017;61:e00863–17. https://doi.org/10.1128/AAC.00863-17.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kaul M, Mark L, Parhi AK, LaVoie EJ, Pilch DS. Combining the FtsZ-targeting prodrug TXA709 and the cephalosporin Cefdinir Confers synergy and reduces the frequency of resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2016;60:4290–6. https://doi.org/10.1128/AAC.00613-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tan CM, Therien AG, Lu J, Lee SH, Caron A, Gill CJ, et al. Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-Lactam antibiotics. Sci Transl Med. 2012;4:126ra35. https://doi.org/10.1126/scitranslmed.3003592.

    Article  PubMed  Google Scholar 

  21. Pinho MG, Kjos M, Veening J-W. How to get (a)round: mechanisms controlling growth and division of Coccoid bacteria. Nat Rev Microbiol. 2013;11:601–14. https://doi.org/10.1038/nrmicro3088.

    Article  CAS  PubMed  Google Scholar 

  22. Reed P, Atilano ML, Alves R, Hoiczyk E, Sher X, Reichmann NT, et al. Staphylococcus aureus survives with a minimal peptidoglycan synthesis machine but sacrifices virulence and antibiotic resistance. PLOS Pathog. 2015;11:e1004891. https://doi.org/10.1371/journal.ppat.1004891.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The Penicillin-Binding proteins: structure and role in Peptidoglycan biosynthesis. FEMS Microbiol Rev. 2008;32:234–58. https://doi.org/10.1111/j.1574-6976.2008.00105.x.

    Article  CAS  PubMed  Google Scholar 

  24. Pinho MG, de Lencastre H, Tomasz A. Cloning, characterization, and inactivation of the gene pbpC, encoding penicillin-binding protein 3 of Staphylococcus aureus. J Bacteriol. 2000;182:1074–9.

    Article  CAS  Google Scholar 

  25. Kaul M, Mark L, Zhang Y, Parhi AK, Lyu YL, Pawlak J, et al. TXA709, an FtsZ-targeting Benzamide Prodrug with improved Pharmacokinetics and enhanced in vivo efficacy against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2015;59:4845–55. https://doi.org/10.1128/AAC.00708-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. CLSI. Clinical Laboratory and Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing, 27th Edition ed. Wayne, PA: 2017.

  27. Egan AJ, Cleverley RM, Peters K, Lewis RJ, Vollmer W. Regulation of bacterial cell wall growth. FEBS J. 2017;284:851–67. https://doi.org/10.1111/febs.13959.

    Article  CAS  PubMed  Google Scholar 

  28. Leski TA, Tomasz A. Role of Penicillin-Binding Protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus: evidence for the cooperative functioning of PBP2, PBP4, and PBP2A. J Bacteriol. 2005;187:1815–24. https://doi.org/10.1128/JB.187.5.1815-1824.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Monteiro JM, Fernandes PB, Vaz F, Pereira AR, Tavares AC, Ferreira MT, et al. Cell shape dynamics during the staphylococcal cell cycle. Nat Commun. 2015;6:8055. https://doi.org/10.1038/ncomms9055.

    Article  CAS  PubMed  Google Scholar 

  30. Pinho MG, Errington J. Recruitment of Penicillin-Binding Protein PBP2 to the division site of Staphylococcus aureus is dependent on its transpeptidation substrates. Mol Microbiol. 2005;55:799–807. https://doi.org/10.1111/j.1365-2958.2004.04420.x.

    Article  CAS  PubMed  Google Scholar 

  31. Ferrer-González E, Huh H, Al-Tameemi HM, Boyd JM, Lee SH, Pilch DS. Impact of FtsZ inhibition on the localization of the penicillin binding proteins in methicillin-resistant Staphylococcus aureus. J Bacteriol. 2021;203:e0020421. https://doi.org/10.1128/JB.00204-21.

    Article  PubMed  Google Scholar 

  32. Sharma V, McNeill JH. To scale or not to scale: the principles of dose extrapolation. Br J Pharmacol. 2009;157:907–21. https://doi.org/10.1111/j.1476-5381.2009.00267.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barza M, Weinstein L. Pharmacokinetics of the Penicillins in Man. Clin Pharmacokinet. 1976;1:297–308. https://doi.org/10.2165/00003088-197601040-00004.

    Article  CAS  PubMed  Google Scholar 

  34. Landersdorfer CB, Kirkpatrick CM, Kinzig M, Bulitta JB, Holzgrabe U, Sorgel F. Inhibition of flucloxacillin tubular renal secretion by Piperacillin. Br J Clin Pharm. 2008;66:648–59. https://doi.org/10.1111/j.1365-2125.2008.03266.x.

    Article  CAS  Google Scholar 

  35. Lee W, Kim RB. Transporters and renal drug elimination. Annu Rev Pharm Toxicol. 2004;44:137–66. https://doi.org/10.1146/annurev.pharmtox.44.101802.121856.

    Article  CAS  Google Scholar 

  36. Everts RJ, Begg R, Gardiner SJ, Zhang M, Turnidge J, Chambers ST, et al. Probenecid and food effects on flucloxacillin pharmacokinetics and pharmacodynamics in healthy volunteers. J Infect. 2020;80:42–53. https://doi.org/10.1016/j.jinf.2019.09.004.

    Article  CAS  PubMed  Google Scholar 

  37. Sands M. Treatment of Anorectal Gonorrhea infections in men. J Am Med Assoc (JAMA). 1980;243:1143–4.

    Article  CAS  Google Scholar 

  38. Tanizaki R, Nishijima T, Aoki T, Teruya K, Kikuchi Y, Oka S, et al. High-dose oral Amoxicillin plus Probenecid is highly effective for syphilis in patients with HIV infection. Clin Infect Dis. 2015;61:177–83. https://doi.org/10.1093/cid/civ270.

    Article  CAS  PubMed  Google Scholar 

  39. Tjandramaga TB, Mullie A, Verbesselt R, De Schepper PJ, Verbist L. Piperacillin: human pharmacokinetics after intravenous and intramuscular administration. Antimicrob Agents Chemother. 1978;14:829–37. https://doi.org/10.1128/AAC.14.6.829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Robbins N, Koch SE, Tranter M, Rubinstein J. The History and future of probenecid. Cardiovasc Toxicol. 2012;12:1–9. https://doi.org/10.1007/s12012-011-9145-8.

    Article  CAS  PubMed  Google Scholar 

  41. CLSI. Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, M07-A10. 10th Edition ed. Wayne, PA: 2015.

  42. Chen M, Yang Z, Wu H, Pan X, Xie X, Wu C. Antimicrobial activity and the mechanism of silver nanoparticle Thermosensitive gel. Int J Nanomed. 2011;6:2873–7.

    CAS  Google Scholar 

  43. Kaul M, Mark L, Zhang Y, Parhi AK, LaVoie EJ, Pilch DS. Pharmacokinetics and in vivo antistaphylococcal efficacy of TXY541, a 1-methylpiperidine-4-carboxamide Prodrug of PC190723. Biochemical Pharmacol. 2013;86:1699–707. https://doi.org/10.1016/j.bcp.2013.10.010.

    Article  CAS  Google Scholar 

  44. O’Neill AJ, Chopra I. Preclinical evaluation of novel antibacterial agents by microbiological and molecular techniques. Expert Opin Investig Drugs. 2004;13:1045–63. https://doi.org/10.1517/13543784.13.8.1045.

    Article  PubMed  Google Scholar 

  45. Stiles BG, Campbell YG, Castle RM, Grove SA. Correlation of temperature and toxicity in murine studies of Staphylococcal Enterotoxins and Toxic Shock Syndrome Toxin 1. Infect Immun. 1999;67:1521–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH grant R01 AI118874. We are indebted to Chia Y. Lee (University of Arkansas for Medical Sciences, Little Rock, AK) and Alexander R. Horswill (University of Colorado School of Medicine, Aurora, CO) for providing us with MSSA RN4220 and MRSA LAC, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Pilch.

Ethics declarations

Conflict of interest

Drs. Pilch and LaVoie are co-founders of TAXIS Pharmaceuticals and therefore have a financial interest in the company.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaul, M., Ferrer-González, E., Mark, L. et al. Combination with a FtsZ inhibitor potentiates the in vivo efficacy of oxacillin against methicillin-resistant Staphylococcus aureus. Med Chem Res 31, 1705–1715 (2022). https://doi.org/10.1007/s00044-022-02960-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02960-5

Keywords

Navigation