Skip to main content
Log in

Design, synthesis, and antifungal activity evaluation of novel 2-cyano-5-oxopentanoic acid derivatives as potential succinate dehydrogenase inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Two series of novel 2-cyano-5-oxopentanoic acid derivatives (1a−l, 2a−l) were designed, synthesized, and characterized by IR, 1H NMR, 13C NMR, and HRMS. Their in vitro antifungal activity against five plant pathogenic fungi were then assessed, including Gibberella zeae, Helminthosporium maydis, Rhizoctonia solani, Botrytis cinerea, and Sclerotinia sclerotiorum. Single crystals of compound 1c were determined and crystallized in the orthorhombic system with space group Fdd2. The inhibitory rate and the median effect concentrations (EC50) of compounds 1c, 1g, 1k, and 2i were better than carbendazim against S. sclerotiorum at 20 µg/mL. Meanwhile, the half inhibitory concentrations (IC50) of compounds 1c, 1g, 1k, and 2i against succinate dehydrogenase (SDH) and their score in molecular docking were both lower than carbendazim, indicating that these four compounds have stronger antifungal activities and affinities than carbendazim. Therefore, we conclude that compounds 1c, 1g, 1k, and 2i might be potential succinate dehydrogenase inhibitors (SDHIs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Chen Y, Zhang AF, Wang WX, Zhang Y, Gao TC. Baseline sensitivity and efficacy of thifluzamide in Rhizoctonia solani. Ann Appl Biol. 2012;161:247–54. https://doi.org/10.1111/j.1744-7348.2012.00569.x.

  2. Yanase Y, Kishi J, Inami S, Katsuta H, Yoshikawa Y. Biological activity and disease controlling efficacy of penthiopyrad. J Pestic Sci. 2013;38:188–93. https://doi.org/10.1584/jpestics.D12-063.

  3. Veloukas T, Karaoglanidis GS. Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity. Pest Manag Sci. 2012;68:858–64. https://doi.org/10.1002/ps.3241.

    Article  PubMed  CAS  Google Scholar 

  4. Xiong L, Shen YQ, Jiang LN, Zhu XL, Yang WC, Huang W, Yang GF. Succinate dehydrogenase: An ideal target for fungicide discovery. Discovery and Synthesis of Crop Protection Products. American Chemical Society: Washington, DC. 2015;Chapter 13:pp 175–194.

  5. Jin H, Zhou J, Pu T, Zhang A, Gao X, Tao K, et al. Synthesis of novel fenfuram-diarylether hybrids as potent succinate dehydrogenase inhibitors. Bioorg Chem. 2017;73:76 https://doi.org/10.1016/j.bioorg.2017.06.002.

    Article  PubMed  CAS  Google Scholar 

  6. Xiong L, Li H, Jiang LN, Ge JM, Yang WC, Zhu XL, et al. Structure-based discovery of potential fungicides as succinate ubiquinone oxidoreductase inhibitors. J Agric Food Chem. 2017;65:1021–9. https://doi.org/10.1021/acs.jafc.6b05134.

    Article  PubMed  CAS  Google Scholar 

  7. Yao TT, Fang S, Li Z, Xiao D, Dong X. Discovery of novel succinate dehydrogenase inhibitors by the integration of in silico library design and pharmacophore mapping. J Agric Food Chem. 2017;65. https://doi.org/10.1021/acs.jafc.7b00249.

  8. Yao TT, Xiao DX, Li ZS, Cheng JL, Fang SW, Du YJ, et al. Design, synthesis, and fungicidal evaluation of novel pyrazole-furan and pyrazole-pyrrole carboxamide as succinate dehydrogenase inhibitors. J Agric Food Chem. 2017. https://doi.org/10.1021/acs.jafc.7b01251.

  9. Wang H, Gao X, Zhang X, Jin H, Tao K, Hou T. Design, synthesis and antifungal activity of novel fenfuram-diarylamine hybrids. Bioorganic Med Chem Lett. 2017;27. https://doi.org/10.1016/j.bmcl.2016.11.026.

  10. Zhang A, Yue Y, Yang Y, Yang J, Tao K, Jin H, et al. Discovery of N-(4-fluoro-2-(phenylamino)phenyl)-pyrazole-4-carboxamides as potential succinate dehydrogenase inhibitors. Pestic Biochem Physiol. 2019;158:175–84. https://doi.org/10.1016/j.pestbp.2019.05.007.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang A, Zhou J, Ke T, Hou T, Hong J. Design, synthesis and antifungal evaluation of novel pyrazole carboxamides with diarylamines scaffold as potent succinate dehydrogenase inhibitors. Bioorg Medicinal Chem Lett. 2018;28:3042–5. https://doi.org/10.1016/j.bmcl.2018.08.001.

    Article  CAS  Google Scholar 

  12. Zhang XX, Jin H, Deng YJ, Gao XH, Li Y. Synthesis and biological evaluation of novel pyrazole carboxamide with diarylamine-modified scaffold as potent antifungal agents. Chin Chem Lett. 2017;28:1731–6. https://doi.org/10.1016/j.cclet.2017.04.021.

    Article  CAS  Google Scholar 

  13. Nowakowska Z. A review of anti-infective and anti-inflammatory chalcones. Eur J Medicinal Chem. 2007;42:125–37. https://doi.org/10.1002/chin.200726212.

    Article  CAS  Google Scholar 

  14. Valla A, Valla B, Cartier D, Guillou RL, Labia R, Florent L, et al. New syntheses and potential antimalarial activities of new ‘retinoid-like chalcones’. Eur J Medicinal Chem. 2006;41:142–6. https://doi.org/10.1016/j.ejmech.2005.05.008.

    Article  CAS  Google Scholar 

  15. Boeck P, Bandeira Falcao CA, Leal PC, Yunes RA, Filho VC, Torres-Santos EC, et al. Synthesis of chalcone analogues with increased antileishmanial activity. Bioorg Med Chem. 2006;14:1538–45. https://doi.org/10.1016/j.bmc.2005.10.005.

    Article  PubMed  CAS  Google Scholar 

  16. Lee SH, Seo GS, Ji YK, Xing YJ, Kim HD, Dong HS. Heme oxygenase 1 mediates anti-inflammatory effects of 2′,4′,6′-tris(methoxymethoxy) chalcone. Eur J Pharmacol. 2006;532:178–86. https://doi.org/10.1016/j.ejphar.2006.01.005.

    Article  PubMed  CAS  Google Scholar 

  17. Cheenpracha S, Karalai C, Ponglimanont C, Subhadhirasakul S, Tewtrakul S. Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata. Bioorg Medicinal Chem. 2006;14:1710–4. https://doi.org/10.1016/j.bmc.2005.10.019.

    Article  CAS  Google Scholar 

  18. Xu GF, Song BA, Bhadury PS, Yang S, Zhang PQ, Jin LH, et al. Synthesis and antifungal activity of novel s-substituted 6-fluoro-4-alkyl(aryl)thioquinazoline derivatives. Bioorg Medicinal Chem. 2007;15:3768–74. https://doi.org/10.1016/j.bmc.2007.03.037.

    Article  CAS  Google Scholar 

  19. Sivaprasad G, Perumal PT, Prabavathy VR, Mathivanan N. Synthesis and anti-microbial activity of pyrazolylbisindoles—promising anti-fungal compounds. Bioorg Medicinal Chem Lett. 2006;16:6302–5. https://doi.org/10.1016/j.bmcl.2006.09.019.

    Article  CAS  Google Scholar 

  20. Huang Q, Qian X, Song G, Cao S. The toxic and anti-feedant activity of 2H-pyridazin-3-one-substituted 1,3,4-oxadiazoles against the armyworm Pseudaletia separata (Walker) and other insects and mites. Pest Manag Sci. 2003;59:933–9. https://doi.org/10.1002/ps.704.

    Article  PubMed  CAS  Google Scholar 

  21. Bhat AR, Athar F, Azam A. New derivatives of 3,5-substituted-1,4,2-dioxazoles: synthesis and activity against Entamoeba histolytica. Eur J Medicinal Chem. 2009;44:926–36. https://doi.org/10.1016/j.ejmech.2008.02.001.

    Article  CAS  Google Scholar 

  22. Johnson M, Younglove B, Lee L, LeBlanc R, Holt H Jr, Hills P, et al. Design, synthesis, and biological testing of pyrazoline derivatives of combretastatin-A4. Bioorg Medicinal Chem Lett. 2007;17:5897–901. https://doi.org/10.1016/j.bmcl.2007.07.105.

    Article  CAS  Google Scholar 

  23. Ozdemir Z, Kandilci HB, Gümüşel B, Calis U, Bilgin AA. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Arch Der Pharmazie. 2010;40:701–7. https://doi.org/10.1016/j.ejmech.2006.09.006.

    Article  CAS  Google Scholar 

  24. Ozdemir A, Turan-Zitouni G, Kaplanckl AG, Revial G, Güven K. Synthesis and antimicrobial activity of 1-(4-aryl-2-thiazolyl)-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives. Eur J Medicinal Chem. 2007;42:403–9. https://doi.org/10.1016/j.ejmech.2006.10.001.

    Article  CAS  Google Scholar 

  25. Wang X, Gao S, Yang J, Yang G, Tang X. Synthesis and antifungal activity evaluation of new heterocycle containing amide derivatives. Nat Prod Res. 2016;30:682–8. https://doi.org/10.1080/14786419.2015.1041137.

    Article  PubMed  CAS  Google Scholar 

  26. Wang X, Tang X. Design, synthesis and evaluate in vitro antifungal activity of novel benzamide derivatives. J Chem Soc Pak. 2019;41:549–54.

    CAS  Google Scholar 

  27. Morita M, Ueda T, Yoneda T, Koyanagi T, Haga T. Flonicamid, a novel insecticide with a rapid inhibitory effect on aphid feeding. Pest Manag Sci. 2007;63:969–73. https://doi.org/10.1002/ps.1423.

    Article  PubMed  CAS  Google Scholar 

  28. Kim DS, Chun SJ, Jeon JJ, Lee SW, Joe GH. Synthesis and fungicidal activity of ethaboxam against Oomycetes. Pest Manag Sci. 2004;60:1007–12. https://doi.org/10.1002/ps.873.

    Article  PubMed  CAS  Google Scholar 

  29. Piqueras CM, Latorre BA, René T. Effectiveness of isofetamid, a new succinate dehydrogenase inhibitor fungicide, in the control of grapevine gray mold. Cienc E Investigación Agrar. 2014;41:365–74. https://doi.org/10.4067/S0718-16202014000300009.

    Article  Google Scholar 

  30. Kahriman N, Serdarolu V, Peker K, Aydn A, Usta A. Synthesis and biological evaluation of new 2,4,6-trisubstituted pyrimidines and their N-alkyl derivatives. Bioorg Chem. 2018;83:580–94. https://doi.org/10.1016/j.bioorg.2018.10.068.

    Article  PubMed  CAS  Google Scholar 

  31. Kumar N, Chauhan A, Drabu S. Synthesis of cyanopyridine and pyrimidine analogues as new anti-inflammatory and antimicrobial agents. Biomed Pharmacother. 2011;65:375–80. https://doi.org/10.1016/j.biopha.2011.04.023.

    Article  PubMed  CAS  Google Scholar 

  32. Al-Maqtari MH, Jamalis J, Hadda TB, Sankaranarayanan M, Chander S, Ahmad MA, et al. Synthesis, characterization, POM analysis and antifungal activity of novel heterocyclic chalcone derivatives containing acylated pyrazole. Res Chem Intermed. 2017;43:1893–907. https://doi.org/10.1007/s11164-016-2737-y.

    Article  CAS  Google Scholar 

  33. Herencia F, Ferrandiz ML, Ubeda A, Dominguez JN, Charris JE, Lobo GM, et al. Synthesis and anti-inflammatory activity of chalcone derivatives. Bioorg Medicinal Chem Lett. 1998;8:1169–74. https://doi.org/10.1016/s0960-894x(98)00179-6.

    Article  CAS  Google Scholar 

  34. Musumarra G, Ballistreri FP. Studies of substituent effects by carbon-13 NMR spectroscopy. Thiophene and furan chalcone analogues. Magn Reson Chem. 1980;14:384–91. https://doi.org/10.1002/mrc.1260240305.

    Article  CAS  Google Scholar 

  35. Zheng CJ, Jiang SM, Chen ZH, Ye BJ, Piao HR. Synthesis and anti-bacterial activity of some heterocyclic chalcone derivatives bearing thiofuran, furan, and quinoline moieties. Arch der Pharmazie Chem Life Sci. 2011;344:689–95. https://doi.org/10.1002/ardp.201100005.

    Article  CAS  Google Scholar 

  36. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard J, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr. 2010;42:339–41. https://doi.org/10.1107/S0021889808042726.

    Article  CAS  Google Scholar 

  37. Palatinus L, Chapuis G. SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr. 2007;40. https://doi.org/10.1107/S0021889807029238.

  38. Palatinus L, Lee A. Symmetry determination following structure solution in P1. J Appl Crystallogr. 2008;41:975–84. https://doi.org/10.1107/S0021889808028185.

    Article  CAS  Google Scholar 

  39. Palatinus L, Prathapa SJ, Smaalen SV. EDMA: a computer program for topological analysis of discrete electron densities. J Appl Crystallogr. 2012;45. https://doi.org/10.1107/S0021889812016068.

  40. Sheldrick GM. A short history of SHELX. Acta Crystallogr Section A. 2007;64. https://doi.org/10.1107/S0108767307043930.

  41. Ye YH, Ma L, Dai ZC, Xiao Y, Zhang YY, Li DD, et al. Synthesis and antifungal activity of nicotinamide derivatives as succinate dehydrogenase inhibitors. J Agric Food Chem. 2014;62:4063–71. https://doi.org/10.1021/jf405437k.

    Article  PubMed  CAS  Google Scholar 

  42. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61. https://doi.org/10.1002/jcc.21334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91. https://doi.org/10.1002/jcc.21256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999;17:57–61.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2018YFD0900904) and the Chengdu Science and Technology Project (No. 2018-YF05-00970-SN). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mi-jun Peng or Yong-zhan Mai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xs., Tang, Xr., Peng, Mj. et al. Design, synthesis, and antifungal activity evaluation of novel 2-cyano-5-oxopentanoic acid derivatives as potential succinate dehydrogenase inhibitors. Med Chem Res 31, 94–107 (2022). https://doi.org/10.1007/s00044-021-02818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02818-2

Keywords

Navigation