Skip to main content
Log in

Design and synthesis of new 1,4,5-trisubstituted triazole-bearing benzenesulphonamide moiety as selective COX-2 inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A new series of 1,4,5-trisubstituted triazole-bearing benzenesulphonamide moiety, COX-2 pharmacophore, was designed and synthesized. The synthetic pathway for preparation of the new 1,2,3-triazole derivatives started with the preparation of the two key intermediates: 4-(4-acetyl-5-methyl-1H-1,2,3-triazol-1-yl)benzenesulfonamide 3 and 4-(4-(hydrazinecarbonyl)-5-methyl-1H-1,2,3-triazol-1-yl)benzenesulfonamide 13 that were then used to synthesize the new triheterocycles. All the synthesized compounds were virtually screened for their binding interactions with both COX isozymes. Compounds showing similar conformation to that of celecoxib, the co-crystallized ligand, and exhibited reasonable interactions, were then evaluated for their in vitro COX-1 and COX-2 inhibition activity. All the compounds under investigation were found to be active as COX-1 and COX-2 inhibitors. Compounds 11 and 13 showed the highest activity as COX-2 inhibitors with IC50 values of 2.618 and 2.92 µM, respectively. On the other hand, compound 13 showed moderate selectivity toward COX-2 inhibition with selectivity ratio of 6.99. Summing up, as confirmed by in vitro and in silico results, the triazolyl benzenesulfonamide derivative 13-bearing unsubstituted hydrazide moiety can be considered as suitable candidate for further investigation as selective COX-2 inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ricciotti E, Fitzgerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986–1000. https://doi.org/10.1161/ATVBAHA.110.207449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lannergård A, Larsson A, Kragsbjerg P, Friman G. Correlations between serum amyloid A protein and C‐reactive protein in infectious diseases, Scand. J Clin Lab Invest. 2003;63:267–72. https://doi.org/10.1080/00365510310001636

    Article  CAS  Google Scholar 

  3. Ricciotti E, Fitzgerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986–1000. https://doi.org/10.1161/ATVBAHA.110.207449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rao CV. Regulation of COX and LOX by curcumin. Adv Exp Med Biol. 2007;595:213–26. https://doi.org/10.1007/978-0-387-46401-5_9

    Article  PubMed  Google Scholar 

  5. Fürstenberger G, Krieg P, Müller-Decker K, Habenicht AJR. What are cyclooxygenases and lipoxygenases ng in the driver’s seat of carcinogenesis? Int J Cancer. 2006;119:2247–54. https://doi.org/10.1002/ijc.22153

    Article  CAS  PubMed  Google Scholar 

  6. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231:232–5. https://doi.org/10.1038/newbio231232a0

    Article  CAS  PubMed  Google Scholar 

  7. Rieke CJ, Mulichak AM, Garavito RM, Smith WL. The role of arginine 120 of human prostaglandin endoperoxide H synthase-2 in the interaction with fatty acid substrates and inhibitors. J Biol Chem. 1999;274:17109–14. http://www.ncbi.nlm.nih.gov/pubmed/10358065. Accessed May 1, 2019.

  8. Marnett LJ, Rowlinson SW, Goodwin DC, Kalgutkar AS, Lanzo CA. Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. J Biol Chem. 1999;274:22903–6. https://doi.org/10.1074/jbc.274.33.22903

    Article  CAS  PubMed  Google Scholar 

  9. Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, et al. Structural basis for selective inhibition of cyciooxygenase-2 by anti-inflammatory agents. Nature. 1996;384:644–8. https://doi.org/10.1038/384644a0

    Article  CAS  PubMed  Google Scholar 

  10. Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev. 2004;56:387–437. https://doi.org/10.1124/pr.56.3.3

    Article  CAS  PubMed  Google Scholar 

  11. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W. et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA.1994;91:12013–7. https://doi.org/10.1073/pnas.91.25.12013

    Article  CAS  PubMed  Google Scholar 

  12. Grosser T, Yu Y, Fitzgerald GA. Emotion recollected in tranquility: lessons learned from the cox-2 saga. Annu Rev Med. 2010;61:17–33. https://doi.org/10.1146/annurev-med-011209-153129

    Article  CAS  PubMed  Google Scholar 

  13. Fosslien E. Adverse effects of nonsteroidal anti-inflammatory drugs on the gastrointestinal system. Ann Clin Lab Sci. 1998;28:67–81.

    CAS  PubMed  Google Scholar 

  14. Rahme E, Bernatsky S. NSAIDs and risk of lower gastrointestinal bleeding. Lancet. 2010;376:146–8. https://doi.org/10.1016/S0140-6736(10)60839-2

    Article  PubMed  Google Scholar 

  15. Khan MNA, Lee YS. Cyclooxygenase inhibitors: scope of their use and development in cancer chemotherapy. Med Res Rev. 2011;31:161–201. https://doi.org/10.1002/med.20182

    Article  CAS  PubMed  Google Scholar 

  16. Brune K, Hinz B. The discovery and development of antiinflammatory drugs. Arthritis Rheum. 2004;50:2391–9. https://doi.org/10.1002/art.20424

    Article  CAS  PubMed  Google Scholar 

  17. Hinz B, Brune K. Cyclooxygenase-2—10 years later. J Pharmacol Exp Ther. 2002;300:367–75. https://doi.org/10.1124/jpet.300.2.367

    Article  CAS  PubMed  Google Scholar 

  18. Ho L, Qin W, Stetka BS, Pasinetti GM. Is there a future for cyclo-oxygenase inhibitors in Alzheimer’s disease? CNS Drugs. 2006;20:85–98. https://doi.org/10.2165/00023210-200620020-00001

    Article  CAS  PubMed  Google Scholar 

  19. Bartels A, Leenders K. Cyclooxygenase and neuroinflammation in Parkinsons disease neurodegeneration. Curr Neuropharmacol. 2010;8:62–68. https://doi.org/10.2174/157015910790909485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prasit P, Wang Z, Brideau C, Chan CC, Charleson S, Cromlish W. et al. The discovery of rofecoxib, [MK 966, VIOXX®, 4-(4’-methylsulfonylphenyl)-3-phenyl-2(5H)-furanone], an orally active cyclooxygenase-2 inhibitor. Bioorganic Med Chem Lett. 1999;9:1773–1778. https://doi.org/10.1016/S0960-894X(99)00288-7.

    Article  CAS  Google Scholar 

  21. Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S. et al. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC-58635, Celecoxib). J Med Chem. 1997;40:1347–1362.

    Article  CAS  Google Scholar 

  22. Szabó G, Fischer J, Kis-Varga Á, Gyires K. New celecoxib derivatives as anti-inflammatory agents. J Med Chem. 2008;51:142–7. https://doi.org/10.1021/jm070821f

    Article  CAS  PubMed  Google Scholar 

  23. Talley JJ, Brown DL, Carter JS, Graneto MJ, Koboldt CM, Masferrer JL. et al. 4-[5-Methyl-3-phenylisoxazol-4-yl]-benzenesulfonamide, Valdecoxib: A potent and selective inhibitor of COX-2 [4]. J Med Chem. 2000;43:775–7. https://doi.org/10.1021/jm990577v

  24. Howes LG. Selective COX-2 inhibitors, NSAIDs and cardiovascular events—is celecoxib the safest choice? Ther Clin Risk Manag. 2007;3:831–45. /pmc/articles/PMC2376081/?report=abstract

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramalho TC, Rocha MVJ, Da Cunha EFF, Freitas MP. The search for new COX-2 inhibitors: a review of 2002–2008 patents. Expert Opin Ther Pat. 2009;19:1193–228. https://doi.org/10.1517/13543770903059125

    Article  CAS  PubMed  Google Scholar 

  26. Al-Hourani BJawabrah, Sharma SK, Suresh M, Wuest F. Cyclooxygenase-2 inhibitors: a literature and patent review (2009-2010). Expert Opin Ther Pat. 2011;21:1339–432. https://doi.org/10.1517/13543776.2011.593510

    Article  CAS  Google Scholar 

  27. Zarghi A, Kakhgi S, Hadipoor A, Daraee B, Dadrass OG, Hedayati M. Design and synthesis of 1,3-diarylurea derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg Med Chem Lett. 2008;18:1336–9. https://doi.org/10.1016/j.bmcl.2008.01.021

    Article  CAS  PubMed  Google Scholar 

  28. Uddin MJ, Rao PNP, Knaus EE. Design and synthesis of acyclic triaryl (Z)-olefins: a novel class of cyclooxygenase-2 (COX-2) inhibitors. Bioorg Med Chem. 2004;12:5929–40. https://doi.org/10.1016/j.bmc.2004.08.021

    Article  CAS  PubMed  Google Scholar 

  29. Chowdhury MA, Dong Y, Chen Q-H, Abdellatif KRA, Knaus EE. Synthesis and cyclooxygenase inhibitory activities of linear 1-(methanesulfonylphenyl or benzenesulfonamido)-2-(pyridyl)acetylene regioisomers. Bioorg Med Chem. 2008;16:1948–56. https://doi.org/10.1016/j.bmc.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  30. Portevin B, Tordjman C, Pastoureau P, Bonnet J, De Nanteuil G. 1,3-Diaryl-4,5,6,7-tetrahydro-2H-isoindole derivatives: a new series of potent and selective COX-2 inhibitors in which a sulfonyl group is not a structural requisite. J Med Chem. 2000;43:4582–93. https://doi.org/10.1021/jm990965x

    Article  CAS  PubMed  Google Scholar 

  31. Sahu A, Das D, Sahu P, Mishra S, Sakthivel A, Gajbhiye A, et al. Bioisosteric replacement of amide group with 1,2,3-triazoles in acetaminophen addresses reactive oxygen species-mediated hepatotoxic insult in Wistar Albino rats. Chem Res Toxicol. 2020;33:522–35. https://doi.org/10.1021/acs.chemrestox.9b00392

    Article  CAS  PubMed  Google Scholar 

  32. Kishore Kumar A, Sunitha V, Shankar B, Ramesh M, Murali Krishna T, Jalapathi P. Synthesis, biological evaluation, and molecular docking studies of novel 1,2,3-triazole derivatives as potent anti-inflammatory agents. Russ J Gen Chem. 2016;86:1154–62. https://doi.org/10.1134/S1070363216050297

    Article  CAS  Google Scholar 

  33. Kim TW, Yong Y, Shin SY, Jung H, Park KH, Lee YH, et al. Synthesis and biological evaluation of phenyl-1H-1,2,3-triazole derivatives as anti-inflammatory agents. Bioorg Chem. 2015;59:1–11. https://doi.org/10.1016/j.bioorg.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  34. Wuest F, Tang X, Kniess T, Pietzsch J, Suresh M. Synthesis and cyclooxygenase inhibition of various (aryl-1,2,3-triazole-1-yl)-methanesulfonylphenyl derivatives, Bioorganic. Med Chem. 2009;17:1146–51. https://doi.org/10.1016/j.bmc.2008.12.032

    Article  CAS  Google Scholar 

  35. Kaur J, Bhardwaj A, Sharma SK, Wuest F. 1,4-Diaryl-substituted triazoles as cyclooxygenase-2 inhibitors: synthesis, biological evaluation and molecular modeling studies. Bioorganic Med Chem. 2013;21:4288–95. https://doi.org/10.1016/j.bmc.2013.04.074

    Article  CAS  Google Scholar 

  36. Hassanein HH, Georgey HH, Fouad MA, El Kerdawy AM, Said MF. Synthesis and molecular docking of new imidazoquinazolinones as analgesic agents and selective COX-2 inhibitors. Future Med Chem. 2017;9:553–78. https://doi.org/10.4155/fmc-2016-0240

    Article  CAS  PubMed  Google Scholar 

  37. Hassib ST, Hassan GS, El-zaher AA, Fouad MA, El-ghafar OAA, Taha EA. Synthesis and biological evaluation of new prodrugs of etodolac and tolfenamic acid with reduced ulcerogenic potential. Eur J Pharm Sci. 2019;140:105101. https://doi.org/10.1016/j.ejps.2019.105101

    Article  CAS  PubMed  Google Scholar 

  38. Blackburn C, Duffey MO, Gould AE, Kulkarni B, Liu JX, Menon S, et al. Discovery and optimization of N-acyl and N-aroylpyrazolines as B-Raf kinase inhibitors. Bioorganic Med Chem Lett. 2010;20:4795–9. https://doi.org/10.1016/j.bmcl.2010.06.110

    Article  CAS  Google Scholar 

  39. Pal M, Sharma NK, Priyanka KK, et al. Synthetic and biological multiplicity of isatin: a review. J Adv Sci Res. 2011;2:35–44. https://www.yumpu.com/en/document/view/26127699/synthetic-and-biological-multiplicity-of-isatin-a-review-sciensageinfo

  40. Sridhar SK, Ramesh A. Synthesis and pharmacological activities of hydrazones, schiff and mannich bases of isatin derivatives. Biol Pharm Bull. 2001;24:1149–52. https://doi.org/10.1248/bpb.24.1149

    Article  CAS  PubMed  Google Scholar 

  41. Detsi A, Majdalani M, Kontogiorgis CA, Hadjipavlou-Litina D, Kefalas P. Natural and synthetic 2′-hydroxy-chalcones and aurones: synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. Bioorganic Med Chem. 2009;17:8073–85. https://doi.org/10.1016/j.bmc.2009.10.002

    Article  CAS  Google Scholar 

  42. Sogawa S, Nihro Y, Ueda H, Izumi A, Miki T, Matsumoto H, et al. 3,4-Dihydroxychalcones as potent 5-lipoxygenase and cyclooxygenase inhibitors. J Med Chem. 1993;36:3904–9. https://doi.org/10.1021/jm00076a019

    Article  CAS  PubMed  Google Scholar 

  43. Siliveri S, Vamaraju H, Raj S. Design, synthesis, molecular docking, ADMET studies, and biological evaluation of isoxazoline and pyrazoline incorporating 1,2,3-triazole benzene sulfonamides. Russ J Bioorganic Chem. 2019;45:381–90. https://doi.org/10.1134/S1068162019050108

    Article  CAS  Google Scholar 

  44. Kumar R, Sharma V, Bua S, Supuran CT, Sharma PK. Synthesis and biological evaluation of benzenesulphonamide-bearing 1,4,5-trisubstituted-1,2,3-triazoles possessing human carbonic anhydrase I, II, IV, and IX inhibitory activity. J Enzyme Inhib Med Chem. 2017;32:1187–94. https://doi.org/10.1080/14756366.2017.1367775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Selinsky BS, Gupta K, Sharkey CT, Loll PJ. Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations. Biochemistry. 2001;40:5172–80. http://www.ncbi.nlm.nih.gov/pubmed/11318639

  46. Wang JL, Limburg D, Graneto MJ, Springer J, Hamper JRB, Liao S, et al. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: the second clinical candidate having a shorter and favorable human half-life. Bioorganic Med Chem Lett. 2010;20:7159–63. https://doi.org/10.1016/j.bmcl.2010.07.054

    Article  CAS  Google Scholar 

  47. Molecular Operating Environment (MOE). Chemical Computing Group ULC, Montreal, QC, Canada, (2008). https://www.chemcomp.com/MOEMolecular_Operating_Environment.htm

  48. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem. 2000;69:145–82. https://doi.org/10.1146/annurev.biochem.69.1.145

    Article  CAS  PubMed  Google Scholar 

  49. Marnett LJ, Kalgutkar AS. Design of selective inhibitors of cyclooxygenase-2 as nonulcerogenic anti-inflammatory agents. Curr Opin Chem Biol. 1998;2:482–90. https://doi.org/10.1016/S1367-5931(98)80124-5

    Article  CAS  PubMed  Google Scholar 

  50. Kiefer JR, Pawiitz JL, Moreland KT, Stegeman RA, Hood WF, Glerse JK, et al. Structural insights into the stereochemistry of the cyclooxygenase reaction. Nature. 2000;405:97–101. https://doi.org/10.1038/35011103

    Article  CAS  PubMed  Google Scholar 

  51. Soliva R, Almansa C, Kalko SG, Luque FJ, Orozco M. Theoretical studies on the inhibition mechanism of cyclooxygenase-2. Is there a unique recognition site? J Med Chem. 2003;46:1372–82. https://doi.org/10.1021/jm0209376

    Article  CAS  PubMed  Google Scholar 

  52. Selinsky BS, Gupta K, Sharkey CT, Loll PJ. Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations. Biochemistry. 2001;40:5172–80. https://doi.org/10.1021/bi010045s

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. Bekheit.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekheit, M.S., Mohamed, H.A., Abdel-Wahab, B.F. et al. Design and synthesis of new 1,4,5-trisubstituted triazole-bearing benzenesulphonamide moiety as selective COX-2 inhibitors. Med Chem Res 30, 1125–1138 (2021). https://doi.org/10.1007/s00044-021-02716-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02716-7

Keywords

Navigation