Skip to main content
Log in

Exploring inhibition mechanism and nature of lipase by Ligupurpuroside A extracted from Ku-Ding tea

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Enzyme-activity essay demonstrated that Ligupurpuroside A acts as a natural inhibitor of lipase in a competitive manner. The inhibition mechanism and nature of lipase by Ligupurpuroside A were investigated by fluorescence spectra, UV–Vis absorption spectra, circular dichroism (CD) spectra and molecular docking methods. Fluorescence experiments indicated that Ligupurpuroside A can quench the intrinsic fluorescence of lipase through a static quenching procedure. Thermodynamic analysis suggested that hydrophobic interaction is the main force between lipase and Ligupurpuroside A. Fluorescence resonance energy transfer experiment showed that an energy transfer from lipase to Ligupurpuroside A occurs with great possibility, confirming the presence of static quenching mechanism of lipase fluorescence by Ligupurpuroside A. Interestingly, conformation of lipase remained almost the same after bound to Ligupurpuroside A based on CD spectral experiments. All these experimental results were validated by the protein-ligand docking studies which further showed that Ligupurpuroside A could bind to the amino acid residues of the hydrophobic cavity on catalytic sites of lipase. This study should be helpful for the design of diet drug and the full use of Ligupurpuroside A in food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Birari PB, Bhutani KK (2007) Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today 12:879–889

    Article  PubMed  CAS  Google Scholar 

  • Bi SY, Yan LL, Pang B, Wang Y (2012) Investigation of three flavonoids binding to bovine serum albumin using molecular fluorescence technique. J Lumines 132:132–140

    Article  CAS  Google Scholar 

  • Bi SY, Yan LL, Wang BB, Bian JY, Sun YT (2011) Spectroscopic and voltammetric characterizations of the interaction of two local anesthetics with bovine serum albumin. J Lumines 131:866–873

    Article  CAS  Google Scholar 

  • Cao SH, Wang DD, Tan XY, Chen JW (2009) Interaction between trans-resveratrol and serum albumin in aqueous solution. J Solut Chem 38:1193–1202

    Article  CAS  Google Scholar 

  • Chantre P, Lairon D (2002) Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity. Phytomedicine 9:3–8

    Article  PubMed  CAS  Google Scholar 

  • Charlton AJ, Baxter NJ, Khan ML, Moir AJ, Haslam (2002) Polyphenol/peptide binding and precipitation. J Agric Food Chem 50:1593–601

    Article  PubMed  CAS  Google Scholar 

  • Cooke D, Bloom S (2006) The obesity pipeline: current strategies in the development of anti-obesity drugs. Nat Rev Drug Discov 5:919–931

    Article  PubMed  CAS  Google Scholar 

  • Ehteshami M, Rasoulzadeh F, Mahboob S, Rashidi MR (2013) Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and rutin. J Lumines 135:164–169

    Article  CAS  Google Scholar 

  • Fang YF, Xu H, Shen LL, Huang FW (2015) Study on the mechanism of the interaction between acteoside and pepsin using spectroscopic techniques. Luminescence 30:859–866

    Article  PubMed  CAS  Google Scholar 

  • Förster T, Sinanoglu O (1965) Delocalized excitation and excitation transfer. In: Szabó A, Ostlund NS (ed) Modern quantum chemistry. Academic Press, New York, NY, p 93–137

    Google Scholar 

  • Guo XJ, Hao AJ, Han XW, Kang PL (2011) The investigation of the interaction between ribavirin and bovine serum albumin by spectroscopic methods. Mol Biol Rep 38:4185–4192

    Article  PubMed  CAS  Google Scholar 

  • Joye IJ, Davidov-Pardo G, Ludescher RD, McClements DJ (2015) Fluorescence quenching study of resveratrol binding to zein and gliadin: towards a more rational approach to resveratrol encapsulation using water-insoluble proteins. Food Chem 185:261–267

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz JR, Masters BR (2008) Principles of fluorescence spectroscopy. J Biomed Opt 13:029901

    Article  Google Scholar 

  • Liu Y, Jia SY, Wu QA, Ran JY, Zhang W, Wu SH (2011) Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Catal Commun 12:717–720

    Article  CAS  Google Scholar 

  • Lowe ME (1994) Pancreatic triglyceride lipase and colipase-insights into dietary-fat digestion. Gastroenterology 107:1524–1536

    Article  PubMed  CAS  Google Scholar 

  • Luo HM, Xiao J, Chen JC, Xu H, Lu J, Liu ZG, Chen SP, Tong ML, Zheng KC, Ji LN (2010) Effect of electronic structures of enantiomers of ruthenium(II) polypyridyl complexes on DNA binding behaviors. Chin J Chem 28:1317–1321

    Article  CAS  Google Scholar 

  • Li YQ, Yang P, Gao F, Zhang ZW, Wu B (2011) Probing the interaction between 3 flavonoids and pancreatic lipase by methods of fluorescence spectroscopy and enzymatic kinetics. Eur Food Res Technol 233:63–69

    Article  CAS  Google Scholar 

  • Liu YH, Zhang LJ, Liu RT, Zhang PJ (2012) Spectroscopic identification of interactions of Pb2+ with bovine serum albumin. J Fluoresc 22:239–245

    Article  PubMed  CAS  Google Scholar 

  • Naik KM, Nandibewoor ST (2013) Spectral characterization of the binding and conformational changes of bovine serum albumin upon interaction with an anti-fungal drug, methylparaben. Spectrochim Acta A 105:418–423

    Article  CAS  Google Scholar 

  • Omoike A, Brandt B (2011) Interaction between bisphenol A and tannic Acid: spectroscopic titration approach. Spectrochim Acta A 79:185–190

    Article  CAS  Google Scholar 

  • Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions-forces contributing to stability. Biochemistry 20:3096–3102

    Article  PubMed  CAS  Google Scholar 

  • Roy AS, Tripathy DR, Ghosh AK, Dasgupta S (2012) An alternate mode of binding of the polyphenol quercetin with serum albumins when complexed with Cu(II). J Lumines 132:2943–2951

    Article  CAS  Google Scholar 

  • Shen H, Gu Z, Jian K, Qi J (2013) In vitro study on the binding of gemcitabine to bovine serum albumin. J Pharm Biomed Anal 75:86–93

    Article  PubMed  CAS  Google Scholar 

  • Shen GF, Liu TT, Wang Q, Jiang M, Shi JH (2015a) Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA). J Photochem Photobiol B 153:380–390

    Article  PubMed  CAS  Google Scholar 

  • Shen LL, Xu H, Huang FW, Li Y, Xiao J, Xiao HF, Ying M, Tian SL, Yang Z, Liu G, Hu ZL, HE ZD, Zhou K (2014) Study on interaction of Ligupurpuroside A with bovine serum albumin by multi-spectroscopic methods. J Lumines 154:80–88

    Article  CAS  Google Scholar 

  • Shen LL, Xu H, Huang FW, Li Y, Xiao HF, Yang Z, Hu ZL, He ZD, Zeng ZL, Li YN (2015b) Investigation on interaction between Ligupurpuroside A and pepsin by spectroscopic and docking methods. Spectrochim Acta A 135:256–263

    Article  CAS  Google Scholar 

  • Shen LL, Zhu QQ, Huang FW, Xu H, Wu XL, Xiao HF, Zhou K, Ying M, Tian SL, Liu G, Hu ZL, Liu ZG (2015c) Effect of heat treatment on structure and immunogenicity of recombinant peanut protein Ara h 2.01. LWT-Food Sci Technol 60:964–969

    Article  CAS  Google Scholar 

  • Song X, Li CY, Zeng Y, Wu HQ, Huang Z, Zhang J, Hong RS, Chen XX (2012) Immunomodulatory effects of crude phenylethanoid glycosides from Ligustrum purpurascens. J Ethnopharmacol 144:584–591

    Article  PubMed  CAS  Google Scholar 

  • Van TH, Sarda L, Verger R, Cambillau C (1992) Structure of the pancreatic lipase-procolipase complex. Nature 359:159–162

    Article  Google Scholar 

  • Wong IYF, He ZD, Huang Y, Chen ZY (2001) Antioxidative activities of phenylethanoid glycosides from Ligustrum purpurascens. J Agric Food Chem 49:3113–3119

    Article  PubMed  CAS  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Chan C, Huang FW, Xie JF, Xu H (2017) Interaction mechanism of pepsin with a natural inhibitor gastrodin studied by spectroscopic methods and molecular docking. Med Chem Res 26:405–413

    Article  CAS  Google Scholar 

  • Wang YL, Mo YC, Zhou LY (2011) Synthesis of CdSe quantum dots using selenium dioxide as selenium source and its interaction with pepsin. Spectrochim Acta A 79:1311–1315

    Article  CAS  Google Scholar 

  • Wang YQ, Zhang HM, Cao J, Zhou QH (2013) Interaction of methotrexate with trypsin analyzed by spectroscopic and molecular modeling methods. J Mol Struct 1051:78–85

    Article  CAS  Google Scholar 

  • Wang Y, Zhang G, Pan J, Gong D (2015) Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase. J Agric Food Chem 63:526–34

    Article  PubMed  CAS  Google Scholar 

  • Wu ZB, Shen LL, Han QG, Lu J, Tang HF, Xu X (2017) Mechanism and nature of inhibition of trypsin by Ligupurpuroside A, a Ku-Ding tea extract, studied by spectroscopic and docking methods. Food Biophys 12:78–87

    Article  Google Scholar 

  • Xu H, Zhu QQ, Lu J, Chen XJ, Xiao J, Liu ZG (2010) Studies on thermodynamic nature of steroselectivity for ruthenium(II) polypyridyl complex binding to DNA. Inorg Chem Commun 13:711–714

    Article  CAS  Google Scholar 

  • Xie ZM, Zhou T, Liao HY, Ye Q, Liu S, Qi L (2015) Effects of Ligustrum robustum on gut microbes and obesity in rats. World J Gastroenterol 21:13042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Q, Zhou XM, Chen XG (2011) Combined molecular docking and multi-spectroscopic investigation on the interaction between Eosin B and human serum albumin. J Lumines 131:581–586

    Article  CAS  Google Scholar 

  • Ying M, Huang FW, Ye HD, Xu H, Shen LL (2015) Study on interaction between curcumin and pepsin by spectroscopic and docking methods. Int J Biol Macromol 79:201–208

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Yang Y, SY L, Yao Q, Liu HT, Li XF, Yi PG (2011) The fluorescence spectroscopic study on the interaction between imidazo[2,1-b]thiazole analogues and bovine serum albumin. Spectrochim Acta A 83:322–328

    Article  CAS  Google Scholar 

  • Yu XY, Lu SY, Yang Y, Li XF, Yi PG (2012) Study on the interaction between NCP-(4-hydroxycoumarins) and bovine serum albumin by spectroscopic techniques. Spectrochim Acta A 91:113–117

    Article  CAS  Google Scholar 

  • Yu ZL, Li DJ, Ji BM, Chen JJ (2008) Characterization of the binding of nevadensin to bovine serum albumin by optical spectroscopic technique. J Mol Struct 889:422–428

    Article  CAS  Google Scholar 

  • Zhang GW, Zhao N, Hu X, Tian J (2010) Interaction of alpinetin with bovine serum albumin: probing of the mechanism and binding site by spectroscopic methods. Spectrochim Acta A 76:410–417

    Article  CAS  Google Scholar 

  • Zhang J, Xiong DX, Chen LN, Kang QL, Zeng BR (2012) Interaction of pyrrolizine derivatives with bovine serum albumin by fluorescence and UV–Vis spectroscopy. Spectrochim Acta A 96:132–138

    Article  CAS  Google Scholar 

  • Zhu SZ, Liu Y (2012) Spectroscopic analyses on interaction of Naphazoline hydrochloride with bovine serum albumin. Spectrochim Acta A 98:142–147

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 31540012, 31470431, 30570421, 31670360, 81501213), Guangdong Natural Science Foundation for Major cultivation project (2014A030308017, 2016A030313051), Shenzhen Science and Technology Innovation Committee Grants (JSGG20160229120821300, JCYJ20150625103526744, JCYJ20170302144535707, JSGG20130411160539208, CXZZ20150601110000604, ZDSYS201506031617582, KQCX20140522111508785, CXZZ20150529165110750) and Shenzhen special funds for Bio-industry development (NYSW20140327010012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Xu or Zhang-Li Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Yu Fan, Yang Xu and Qing-Guo Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Xu, Y., Han, QG. et al. Exploring inhibition mechanism and nature of lipase by Ligupurpuroside A extracted from Ku-Ding tea. Med Chem Res 27, 1822–1833 (2018). https://doi.org/10.1007/s00044-018-2194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-018-2194-9

Keywords

Navigation