Skip to main content
Log in

Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

We report herein the synthesis and biological activities (cytotoxicity, leishmanicidal and trypanocidal) of six quinoline-chalcone and five quinoline-chromone hybrids. The synthesized compounds were evaluated against amastigotes forms of Leishmania (V) panamensis, which is the most prevalent Leishmania species in Colombia and Trypanosoma cruzi, which is the major pathogenic species to humans. Cytotoxicity was evaluated against human U-937 macrophages. Compounds 812, 20, 23 and 24 showed activity against Leishmania (V) panamensis, while compounds 9, 10, 12, 20 and 23 had activity against Trypanosoma cruzi with EC50 values lower than 18 mg mL−1. 20 was the most active compound for both Leishmania (V) panamensis and Trypanosoma cruzi with EC50 of 6.11 ± 0.26 μg mL−1 (16.91 μM) and 4.09 ± 0.24 (11.32 μM), respectively. All hybrids compounds showed better activity than the anti-leishmanial drug meglumine antimoniate. Compounds 20 and 23 showed higher activity than benznidazole, the current anti-trypanosomal drug. Although these compounds showed toxicity for mammalian U-937 cells,they still have the potential to be considered as candidates to antileishmanial or trypanocydal drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  • Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLOS One 7:e35671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baloch N, Alkahraman Y, Zaidi M, Madkour H (2012) Evaluation of 6, 8-dichloro-2-methyl-4H-chromen-4-one derivatives as Antileishmanial agents. Glob J Sci Front Res Chem 12:1–7

    Google Scholar 

  • Bhutta ZA, Sommerfeld J, Lassi ZS, Salam RA, Das JK (2014) Tackling the existing burden of infection diseases in the developing world: existing gaps and the way forward. Infect Dis Poverty 3:1–6

    Article  Google Scholar 

  • Boeck P, Bandeira Falcão CA, Leal PC, Yones RA, Filho VC, Torres-Santos EC, Rossi-Bergmann B (2006) Synthesis of chalcone analogues with increased antileishmanial activity. Bioorg Med Chem 14:1538–1545

    Article  CAS  PubMed  Google Scholar 

  • Buckner FS, Verlinde CL, La Flamme AC, Van Voorhis WC (1996) Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob Agents Chemother 40:2592–2597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cardona W, Arango V, Domínguez J, Robledo S, Muñoz D, Figadère B, Velez ID, Sáez J (2013) Synthesis and leishmanicidal activity of new bis-alkylquinolines. J Chil Chem Soc 58:1709–1712

    Article  CAS  Google Scholar 

  • Cardona W, Guerra D, Restrepo A (2014) Reactivity of δ-substituted α,β-unsaturated cyclic lactones with antileishmanial activity. Mol Simul 40:477–484

    Article  CAS  Google Scholar 

  • Chatelain E, Ioset JR (2011) Drug discovery and development for neglected diseases: the DNDi model. Drug Des Devel Ther 16:175–181

    Google Scholar 

  • Chen M, Zhai L, Christensen SB, Theander TG, Kharazmi A (2001) Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrobiol. Agents Chemother 45:2023–2029

    Article  CAS  Google Scholar 

  • Coa JC, Castrillón W, Cardona W, Carda M, Ospina V, Muñoz JA, Vélez ID, Robledo SM (2015) Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids. Eur J Med Chem 101:746–753

    Article  CAS  PubMed  Google Scholar 

  • Den Boer M, Argaw D, Jannin J, Alvar J (2011) Leishmaniasis impact and treatment access. Clin Microbiol Infect 17:1471–1477

    Article  Google Scholar 

  • Dietze R, Carvalho SF, Valli LC, Berman J, Brewer T, Milhous W, Sanchez J, Schuster B, Grogl M (2001) Phase 2 trial of WR6026, an orally administered 8-aminoquinoline, in the treatment of visceral leishmaniasis caused by Leishmania chagasi. Am J Trop Med Hyg 65:685–689

    Article  CAS  PubMed  Google Scholar 

  • Ellis GP, Barker G (1972) Chromone-2- and -3-carboxylic acids and their derivatives. Prog Med Chem 9:65–116

    Article  CAS  PubMed  Google Scholar 

  • Finney JD (1978) Probit analysis: statistical treatment of the sigmoid response curve, 3rd ed.. Cambridge University Press, Cambridge, p 550

    Google Scholar 

  • Franck X, Fournet A, Prina E, Mahieux R, Hocquemiller R, Figadère B (2004) Biological evaluation of substituted quinolones. Bioorg Med Chem Lett 14:3635–3638

    Article  CAS  PubMed  Google Scholar 

  • Hadjeri M, Barbier M, Ronot X, Mariotte AM, Boumendjel A, Boutonnat J (2003) Modulation of P- glycoprotein-mediated multidrug resistance by flavonoid derivatives and analogues. J Med Chem 46:2125–2131

    Article  CAS  PubMed  Google Scholar 

  • Horton DA, Boume GT, Smythe ML (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 103:893–930

    Article  CAS  PubMed  Google Scholar 

  • Houghton PJ (2000) Chemistry and biological activity of natura land semi-synthetic 450 chromone alkaloids. Stud Nat Prod Chem 21:123–155

    Article  CAS  Google Scholar 

  • Insuasty B, Ramirez J, Becerra D, Echeverry C, Quiroga J, Abonia R, Robledo SM, Velez ID, Upegui Y, Muñoz JA, Ospina V, Nogueras M, Cobo J (2015) An efficient synthesis of a new caffeine-based chalcones, pyrazolines and pyrazolo[3-4-b][1-4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur J Chem Med 93:401–413

    Article  CAS  Google Scholar 

  • Kayser O, Kiderlen AF (2001) In vitro leishmanicidal activity of naturally occurring chalcones. Phytother Res 15:148–152

    Article  CAS  PubMed  Google Scholar 

  • Keenan M, Chaplin JH (2015) A new era for chagas disease drug discovery? Prog Med Chem 54:185–230

    Article  PubMed  Google Scholar 

  • Li SY, Wang XB, Xie SS, Jian N, Wang KD, Yao HQ, Sun HB, Kong LY (2013) Multifunctional tacrine-flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur J Med Chem 69:632–646

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Wilairat P, Croft SL, Tand AL, Go ML (2003) Structure-activity relationships of antileishmanial and antimalarial chalcones. Bioorg Med Chem 11:2729–2738

    Article  CAS  PubMed  Google Scholar 

  • Mallick S, Dutta A, Ghosh J, Maiti S, Mandal AK, Banerjee R, Bandyopadhyay C, Pal C (2011) Protective therapy with novel chromone derivative against Leishmania donovani infection induces Th1 response in vivo. Chemotherapy 57:388–393

    Article  CAS  PubMed  Google Scholar 

  • Mohammed AF, Fournet A, Prina E, Mouscadet JF, Franck X, Hocquemiller R, Figadère B, Fakhfakh MA (2003) Synthesis and biological evaluation of substituted quinolines: potential treatment of protozoal and retroviral co-infections. Bioorg Med Chem 11:5013–5023

    Article  Google Scholar 

  • Mottram JC, Coombs GH, Alexander J (2004) Cysteine peptidases as virulence factors of Leishmania. Curr Opin Microbiol 7:375–381

    Article  CAS  PubMed  Google Scholar 

  • Nakayama H, Loiseau PM, Bories C, De Ortiz ST, Schinini A, Serna E, Rojas de Arias A, Fakhfakh MA, Franck X, Figadère B, Hocquemiller R, Fournet A (2005) Efficacy of orally administered 2- substituted quinolines in experimental murine cutaneous and visceral leishmaniases. Antimicrob Agents Chemother 49:4950–4956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nouvellet P, Cucunubá ZM, Gourbière S (2015) Ecology, evolution and control of Chagas disease: a century of neglected modelling and promising future. Adv Parasitol 87:135–191

    Article  PubMed  Google Scholar 

  • Otero E, Vergara S, Robledo SM, Cardona W, Carda M, Vélez ID, Rojas C, Otálvaro F (2014) Synthesis, leishmanicidal and cytotoxic activity of triclosan-chalcone, triclosan-chromone and triclosan-coumarin hybrids. Molecules 19:13251–13266

    Article  PubMed  Google Scholar 

  • Palit P, Paira P, Hazra A, Banerjee S, Das Gupta A, Dastidar S, Mondal N (2009) Phase transfer catalyzed synthesis of bis-quinolines: antileishmanial activity in experimental visceral leishmaniasis and in vitro antibacterial evaluation. Eur J Med Chem 44:845–853

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Song G (2002) Combined microwave and ultrasound assisted Williamson ether synthesis in the absence of phase-transfer catalysts. Green Chem 4:349–351

    Article  CAS  Google Scholar 

  • Peyman S, Minoo D, Mohammad AZ, Mohammad AB (2004) Silica sulfuric acid as an efficient and reusable reagent for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free conditions. J Braz Chem Soc 15:773–776

    Article  Google Scholar 

  • Pulido SA, Muñoz DL, Restrepo AM, Mesa CV, Alzate JF, Vélez ID, Robledo SM (2012) Improvement of the green fluorescent protein reporter system in Leishmania spp. for the in vitro and in vivo screening of antileishmanial drugs. Acta Trop 122:36–45

    Article  CAS  PubMed  Google Scholar 

  • Suresh K, Sandhya B, Himanshu G (2009) Biological activities of quinoline derivatives. Mini Rev Med Chem 9:1648–1654

    Article  Google Scholar 

  • Taylor VM, Cedeño DL, Muñoz DL, Jones MA, Lash TD, Young AM, Constantino MH, Esposito N, Vélez ID, Robledo SM (2011) In vitro and in vivo studies of the utility of dimethyl and diethyl carbaporphyrin ketals in treatment of cutaneous leishmaniasis. Antimicrob Agents Chemother 55:4755–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tempone A, Melo A, Da Silva P, Brandt C, Martinez F, Borborema A (2005) Synthesis and antileishmanial activities of novel 3-substituted quinolones. Agents chemother 49:1076–1080

    Article  CAS  Google Scholar 

  • Vieira NC, Herrenknecht C, Vacus J, Fournet A, Bories C, Figadère B, Espindola LS, Loiseau PM (2008) Selection of the most promising 2-substituted quinoline as antileishmanial candidate for clinical trials. Biomed Pharmacother 62:684–689

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2013) Why are some tropical diseases called ‘neglected’ http://www.who.int/features/qa/58/en/. Accessed 4 Dec 2013

Download references

Acknowledgements

The authors thank Universidad de Antioquia (grant CODI IN656CE and CIDEPRO) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sara M. Robledo or Wilson I. Cardona.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coa, J.C., García, E., Carda, M. et al. Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids. Med Chem Res 26, 1405–1414 (2017). https://doi.org/10.1007/s00044-017-1846-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-1846-5

Keywords

Navigation