Skip to main content

Advertisement

Log in

Synthesis and structural elucidation of two new series of aurone derivatives as potent inhibitors against the proliferation of human cancer cells

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Two new series of aurone compounds were synthesized via an oxidative cyclization reaction of 2′-hydroxy-chalcones. Series (A) consists of 1a3a aurones with different substitutions on a B-ring at position 4′, and series (B) is made up of 1b3b aurones that have different substitutions at position 2′ of a B-ring. Structures of the synthesized compounds were characterized and confirmed by FTIR (1D and 2D NMR) and EI mass spectral studies. The molecular structure of 2b was further confirmed by the X-ray crystallographic technique, with the compound found to be in Z-isomeric form. The compounds of both series were tested for their antiproliferative activity against human colorectal tumor (HCT 116), human chronic myelogenous leukemia (K562) and hormone-dependent breast cancer (MCF-7) cell lines according to an MTT assay. Series (B) exhibited a higher cytotoxic effect on the cancer cell lines compared to series (A). Selectively, the most promising results have been shown by the two most active compounds, 1b (Z-5,7, 2′-trichloro-aurone), which resulted in IC50 values of 36, 23 and 23 μM against HCT 116, MCF-7 and K562 cancer cells, respectively. Compound 3a (Z-5, 7-dichloro-4′-methyl-aurone) exhibited the highest activity against the K562 cell line (IC50 = 20 μM), which can be compared to that of the standard drug, betulinic acid, with an IC50 value of 15 μM. The results of the present study suggested that aurone derivatives emerged as a potential candidate for the development of future chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal PK (1989) Carbon-13 NMR of flavonoids. Elsevier, Amsterdam

    Google Scholar 

  • Ahamed MBK, Aisha AF, Nassar ZD, Siddiqui JM, Ismail Z, Omari S, Parish C, Majid AA (2012) Cat’s whiskers tea (Orthosiphon stamineus) extract inhibits growth of colon tumor in nude mice and angiogenesis in endothelial cells via suppressing VEGFR phosphorylation. Nutr Cancer 64(1):89–99

    Article  CAS  PubMed  Google Scholar 

  • Arshad A, Osman H, Bagley MC, Lam CK, Mohamad S, Zahariluddin ASM (2011) Synthesis and antimicrobial properties of some new thiazolyl coumarin derivatives. Eur J Med Chem 46(9):3788–3794

    Article  CAS  PubMed  Google Scholar 

  • Atta-Ur-Rahman, Muhammad Iqbal C, Hayat S, Khan AM, Ahmed A (2001) Two new aurones from marine brown alga Spatoglossum variabile. Chem Pharm Bull 49(1):105–107

    Article  CAS  PubMed  Google Scholar 

  • Bandgar BP, Patil SA, Korbad BL, Biradar SC, Nile SN, Khobragade CN (2010) Synthesis and biological evaluation of a novel series of 2, 2-bisaminomethylated aurone analogues as anti-inflammatory and antimicrobial agents. Eur J Med Chem 45(7):3223–3227

    Article  CAS  PubMed  Google Scholar 

  • Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem Int Edit 34(15):1555–1573

    Article  CAS  Google Scholar 

  • Bolek D, Gutschow M (2005) Preparation of 4,6,3′,4′-tetrasubstituted aurones via aluminium oxide-catalyzed condensation. J Heterocyclic Chem 42(7):1399

    Article  CAS  Google Scholar 

  • Bruker (2005) APEX2, SAINT and SADABS. Bruker AXS Inc, Madison

    Google Scholar 

  • Chu H-W, Wu H-T, Lee Y-J (2004) Regioselective hydroxylation of 2-hydroxychalcones by dimethyldioxirane towards polymethoxylated flavonoids. Tetrahedron 60(11):2647–2655

    Article  CAS  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100(1–2):72–79

    Article  CAS  PubMed  Google Scholar 

  • Detsi A, Majdalani M, Kontogiorgis CA, Hadjipavlou-Litina D, Kefalas P (2009) Natural and synthetic 2′-hydroxy-chalcones and aurones: synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. Bioorg Med Chem 17(23):8073–8085

    Article  CAS  PubMed  Google Scholar 

  • Dewar MJS, Zoebisch EG, Healy EF, Stewar JJP (1985) Development and use of quantum mechanical molecular models 76 AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:13

    Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  • Haque RA, Iqbal MA, Asekunowo P, Majid AA, Ahamed MBK, Umar MI, Al-Rawi SS, Al-Suede FSR (2013) Synthesis, structure, anticancer, and antioxidant activity of para-xylyl linked bis-benzimidazolium salts and respective dinuclear Ag (I) N-heterocyclic carbene complexes (part-II). Med Chem Res 22(10):4663–4676

    Article  CAS  Google Scholar 

  • Huang W, Liu MZ, Li Y, Tan Y, Yang GF (2007) Design, syntheses, and antitumor activity of novel chromone and aurone derivatives. Bioorg Med Chem 15(15):5191–5197

    Article  CAS  PubMed  Google Scholar 

  • Lawrence NJ, Rennison D, McGown AT, Hadfield JA (2003) The total synthesis of an aurone isolated from Uvaria hamiltonii: aurones and flavones as anticancer agents. Bioorg Med Chem Lett 13(21):3759–3763

    Article  CAS  PubMed  Google Scholar 

  • Morimoto M, Fukumoto H, Nozoe T, Hagiwara A, Komai K (2007) Synthesis and insect antifeedant activity of aurones against Spodoptera litura larvae. J Agr Food Chem 55(3):700–705

    Article  CAS  Google Scholar 

  • Murias M, Jäger W, Handler N, Erker T, Horvath Z, Szekeres T, Gille L (2005) Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure–activity relationship. Biochem Pharmacol 69(6):903–912. doi:10.1016/j.bcp.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  • Narsinghani T, Sharma MC, Bhargav S (2013) Synthesis, docking studies and antioxidant activity of some chalcone and aurone derivatives. Med Chem Res 22(9):4059–4068

    Article  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okombi S, Rival D, Bonnet S, Mariotte AM, Perrier E, Boumendjel A (2006) Discovery of benzylidenebenzofuran-3 (2H)-one (aurones) as inhibitors of tyrosinase derived from human melanocytes. J Med Chem 49(1):329–333

    Article  CAS  PubMed  Google Scholar 

  • Pelter A, Ward RS, Heller HG (1979) Carbon-13 nuclear magnetic resonance spectra of (Z)-and (E)-aurones. J Chem Soc Perkin Trans 1:328–329

    Article  Google Scholar 

  • Roussaki M, Costa Lima S, Kypreou AM, Kefalas P, Cordeiro da Silva A, Detsi A (2012) Aurones: a promising heterocyclic scaffold for the development of potent antileishmanial agents. Int J Med Chem. doi:10.1155/2012/196921

    PubMed Central  PubMed  Google Scholar 

  • Seabra RM, Andrade PB, Ferreres F, Moreira MM (1997) Methoxylated aurones from cyperus capitatus. Phytochemistry 45(4):839–840

    Article  CAS  Google Scholar 

  • Sheldrick GM (2007) A short history of SHELX. Acta Crystallogr A 64(1):112–122

    Article  PubMed  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA: CA-Cancer J Clin 63(1):11–30

    PubMed  Google Scholar 

  • Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr D 65(2):148–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Venkateswarlu S, Panchagnula GK, Subbaraju GV (2004) Synthesis and antioxidative activity of 3′,4′,6,7-tetrahydroxyaurone, a metabolite of Bidens frondosa. Biosci Biotechnol Biochem 68(10):2183–2185

    Article  CAS  PubMed  Google Scholar 

  • Venkateswarlu S, Panchagnula GK, Gottumukkala AL, Subbaraju GV (2007) Synthesis, structural revision, and biological activities of 4′-chloroaurone, a metabolite of marine brown alga Spatoglossum variabile. Tetrahedron 63(29):6909–6914

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Universiti Sains Malaysia (USM) for functional support through a Research University (RU) Grant (1001/PKIMIA/811221). The authors would also like to acknowledge the RU Grant of USM (RUT 1001/PKIMIA/855006) for financial support for the project. Aboubaker A. Elhadi thanks the Libyan government for the Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasnah Osman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhadi, A.A., Osman, H., Iqbal, M.A. et al. Synthesis and structural elucidation of two new series of aurone derivatives as potent inhibitors against the proliferation of human cancer cells. Med Chem Res 24, 3504–3515 (2015). https://doi.org/10.1007/s00044-015-1400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-015-1400-2

Keywords

Navigation