Skip to main content
Log in

Tryptophan and thiosemicarbazide derivatives: design, synthesis, and biological evaluation as potential β-d-galactosidase and β-d-glucosidase inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Glycosidases, including β-d-galactosidase and β-d-glucosidase, are involved in a range of metabolic disorders, such as cancer, viral or bacterial infections, and diabetes. Previously, we scanned the pharmacophoric space of these enzymes and had a self-consistent and predictive quantitative structure–activity relationship that was used to identify several β-d-galactosidase and β-d-glucosidase inhibitors via in silico search of structural databases. Guided by the preceding modeling efforts, synthesis of a series of tryptophan and thiosemicarbazide derivatives as β-d-galactosidase and β-d-glucosidase inhibitors that match the generated pharmacophores followed by in vitro bioassay was carried out. Synthesized compounds 3c (37 % inhibition at 100 µM) and 4d (49 % inhibition at 100 µM) exhibited the best inhibitory bioactivities against β-d-galactosidase and β-d-glucosidase, respectively. They can serve as a promising lead compounds for the development of potential glycosidase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdula AM, Abu Khalaf R, Mubarak MS, Taha MO (2011) Discovery of new β-D-galactosidase inhibitors via pharmacophore modeling and QSAR analysis followed by in silico screening. J Comput Chem 32:463–482

    Article  CAS  PubMed  Google Scholar 

  • Abu Khalaf R, Abdula AM, Taha MO, Mubarak MS (2011) Discovery of new β-D-glucosidase inhibitors via pharmacophore modeling and QSAR analysis followed by in silico screening. J Mol Model 17:443–464

    Article  PubMed  Google Scholar 

  • Amit MJ, Navnath BK, Sanjay TC, Sushma GS, Dilip DD (2011) Synthesis of new six- and seven-membered 1-N-iminosugars as promising glycosidase inhibitors. Bioorg Med Chem 19:5912–5915

    Article  Google Scholar 

  • Asano N (2003) Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 13:93R–104R

    Article  CAS  PubMed  Google Scholar 

  • Asano N (2009) Sugar-mimicking glycosidase inhibitors: bioactivity and application. Cell Mol Life Sci 66:1479–1492

    Article  CAS  PubMed  Google Scholar 

  • Asano N, Nash RJ, Molyneuxc RJ, Fleet GWJ (2000) Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron Asymmetr 11(8):1645–1680

    Article  CAS  Google Scholar 

  • Berecibar A, Grandjean C, Siriwardena A (1999) Synthesis and biological activity of natural aminocyclopentitol glycosidase inhibitors: mannostatins, trehazolin, allosamidins, and their analogues. Chem Rev 99:779–844

    Article  CAS  PubMed  Google Scholar 

  • Campo VL, Aragao-Leoneti V, Carvalho I (2013) Glycosidases and diabetes: metabolic changes, mode of action and therapeutic perspectives. Carbohyd Chem 39:181–203

    CAS  Google Scholar 

  • d’Alonzo D, Guaragna A, Palumbo G (2009) Glycomimetics at the mirror: medicinal chemistry of L-iminosugars. Curr Med Chem 16:473–505

    Article  PubMed  Google Scholar 

  • Filipa PC, Scott N, Sarah FJ, Mark RW, Terry DB, Dominic SA, Shinpei N, Frederic B, Caroline N, Robert JN, Atsushi K, George WJF (2011) 4-C-Me-DAB and 4-C-Me-LAB—enantiomeric alkyl-branched pyrrolidine iminosugars—are specific and potent α-glucosidase inhibitors; acetone as the sole protecting group. Tetrahedron Lett 52:219–223

    Article  Google Scholar 

  • Gerber-Lemairer S, Juillerat-Jeanneret L (2006) Glycosylation pathways as drug targets for cancer: glycosidase inhibitors. Mini Rev Med Chem 6:1043–1052

    Article  Google Scholar 

  • Gunasekaran S, Venkatachalam K, Jeyavel K, Namasivayam N (2014) Protective effect of p-methoxycinnamic acid, an active phenolic acid against 1,2-dimethylhydrazine-induced colon carcinogenesis: modulating biotransforming bacterial enzymes and xenobiotic metabolizing enzymes. Mol Cell Biochem 394:187–198

    Article  CAS  PubMed  Google Scholar 

  • Ilyin AP, Dmitrieva IG, Kustova VA, Manaev AV, Ivachtchenko AV (2007) Synthesis of heterocyclic compounds possessing the 4H-thieno[3,2-b]pyrrole moiety. J Comb Chem 9:96–106

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson SF, Best D, Saville AW, Mui J, Martinez RF, Nakagawa S, Kunimatsu T, Alonzi DS, Butters TD, Norez C (2013) C-branched iminosugars: α-glucosidase inhibition by enantiomers of isoDMDP, isoDGDP, and isoDAB-l-isoDMDP compared to miglitol and miglustat. J Org Chem 78(15):7380–7397

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Ryu YB, Kang NS, Lee BW, Heo JS, Jeong IY, Park KH (2006) Glycosidase inhibitory flavonoids from sophora flavescens. Biol Pharm Bull 29(2):302–305

    Article  CAS  PubMed  Google Scholar 

  • Kooij R, Branderhorst HM, Bonte S, Wieclawska S, Martin NI, Pieters RJ (2013) Glycosidase inhibition by novel guanidinium and urea iminosugar derivatives. Med Chem Commun 4(2):387–393

    Article  CAS  Google Scholar 

  • Kotake Y, Okauchi T, Iijima A, Yoshimatsu K, Nomura H (1995) Novel 6-5 fused ring heterocycle antifolates with potent antitumor activity: bridge modifications and heterocyclic benzoyl isosters of 2,4-diamino-6,7-dihydro-5H-cyclopenta[d]pyrimidine antifolate. Chem Pharm Bull 43(5):829–841

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Francis S, Dutta D, Gupta V, Yang Y, Zhu JY, Tash JS, Schonbrunn E, Georg GI (2012) Synthesis and evaluation of eight- and four-membered imino-sugar analogs as inhibitors of testicular ceramide-specific glucosyltransferase, testicular β-glucosidase 2, and other glycosidases. J Org Chem 77(7):3082–3098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Schütz C, Favre S, Zhang Y, Vogel P, Sinay P, Bl´eriot Y (2006) Nucleophilic opening of epoxyazepanes: expanding the family of polyhydroxyazepane-based glycosidase inhibitors. Org Biomol Chem 4:1653–1662

    Article  CAS  PubMed  Google Scholar 

  • Lillelund VH, Jensen HH, Liang X, Bols M (2002) Recent developments of transition-state analogue glycosidase inhibitors of non-natural product origin. Chem Rev 102:515–553

    Article  CAS  PubMed  Google Scholar 

  • Macchi B, Minutolo A, Grelli S, Cardona F, Cordero FM, Mastino A, Brandi A (2010) The novel proapoptotic activity of nonnatural enantiomer of lentiginosine. Glycobiology 21:500–506

    Article  Google Scholar 

  • Markad SD, Karanjule NS, Sharma T, Sabharwal SG, Dhavale DD (2006) Synthesis and evaluation of glycosidase inhibitory activity of N-butyl 1-deoxy-D-gluco-homonojirimycin and N-butyl 1-deoxy-L-ido-homonojirimycin. Bioorg Med Chem 14:5535–5539

    Article  CAS  PubMed  Google Scholar 

  • Merrer YL, Gauzy L, Gravier-Pelletier C, Depezay JC (2000) Synthesis of C2-symmetric guanidino-sugars as potent Inhibitors of glycosidases. Bioorg Med Chem 8:307–320

    Article  PubMed  Google Scholar 

  • Pandey G, Dumbre SG, Khan MI, Shabab M (2006) Convergent approach toward the synthesis of the stereoisomers of C-6 homologues of 1-deoxynojirimycin and their analogues: evaluation as specific glycosidase inhibitors. J Org Chem 71:8481–8488

    Article  CAS  PubMed  Google Scholar 

  • Robina I, Vogel P (2005) Synthesis of aza-C-disaccharides (dideoxyimino-alditols C-linked to monosaccharides) and analogues. Synthesis 5:675–702

    Google Scholar 

  • Scofield AM, Witham P, Nash RJ, Kite GC, Fellows LE (1995a) Castanospermine and other polyhydroxy alkaloids as inhibitors of insect glycosidases. Comp Biochem Phys 112A:187–196

    Article  CAS  Google Scholar 

  • Scofield AM, Witham P, Nash RJ, Kite GC, Fellows LE (1995b) Differentiation of glycosidase activity in some Hemiptera and Lepidoptera by means of castanospermine and other polyhydroxy alkaloids. Comp Biochem Phys 112A:197–205

    Article  CAS  Google Scholar 

  • Shitara E, Nishimura Y, Kojima F, Takeuchi T (1999) A facile synthesis of d-glucose-type gem-diamine 1-N-iminosugars: A new family of glucosidase inhibitors. Bioorg Med Chem 7:1241–1246

    Article  CAS  PubMed  Google Scholar 

  • Vlaovic D, Cetkovic G, Juranic I, Balaz J, Lajsic S, Djokovic D (1990) The application of levulinic acid and 5-nitro-2-furylmethylene diacetate in the total synthesis of some novel biologically active (5-nitro-2-furyl)azomethines. Monatsh Chem 121(11):931–939

    Article  CAS  Google Scholar 

  • Wang JT, Lin TC, Chen YH, Lin CH, Fang JM (2013) Polyhydroxylated pyrrolidine and 2-oxapyrrolizidine as glycosidase inhibitors. Med Chem Commun 4(5):783–791

    Article  CAS  Google Scholar 

  • Yoshino T, Imoria S, Togoa H (2006) Efficient esterification of carboxylic acids and phosphonic acids with trialkyl orthoacetate in ionic liquid. Tetrahedron 62:1309–1317

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Deanship of Scientific Research and Hamdi-Mango Center for Scientific Research at the University of Jordan for their generous funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reema Abu Khalaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Khalaf, R., Abdula, A.M., Mubarak, M.S. et al. Tryptophan and thiosemicarbazide derivatives: design, synthesis, and biological evaluation as potential β-d-galactosidase and β-d-glucosidase inhibitors. Med Chem Res 24, 2529–2550 (2015). https://doi.org/10.1007/s00044-014-1314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1314-4

Keywords

Navigation