Skip to main content

Advertisement

Log in

Design, synthesis, and biologic evaluation of some novel N-arylpyrazole derivatives as cytotoxic agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A novel series of N-arylpyrazole derivatives (5a–5d, 7a–7c) has been designed and synthesized via aromatic substitution reaction of N-nonsubstituted pyrazoles with 4-fluoronitrobenzene in the presence of base. The structures of these compounds were established on the basis of elemental (C, H, and N) and spectral analysis (1H NMR, 13C NMR, HRMS, and FT-IR). All the compounds were tested for their cytotoxic activity in vitro against four human tumor cell lines: carcinoma (Bel-7402), nasopharyngeal carcinoma (KB), immature granulocyte leukemia (HL-60), and gastrocarcinoma (BGC-823) by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results showed that most of the obtained compounds exhibited promising cytotoxicity against tested carcinoma cell lines with low IC50 values. The bis-pyrazole derivative 7c, bearing alkoxy group on the 5-position of phenyl ring, was the most effective one. It is inhibition of cell growth of Bel-7402 cells was 1.5-fold higher than that found for cisplatin. And, also mono-pyrazole derivatives 5a and 5b, decorated with trifluoromethyl group on the phenyl ring, displayed better cytotoxicity than that of cisplatin against Bel-7402 cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  • Balbi A, Anzaldi M, Macciò C, Aiello C, Mazzei M, Gangemi R, Castagnola P, Miele M, Rosano C, Viale M (2011) Synthesis and biological evaluation of novel pyrazole derivatives with anticancer activity. Eur J Med Chem 46(11):5293–5309

    Article  CAS  PubMed  Google Scholar 

  • Barton CC, Daves GF, Franceschi G (1980) A new synthetic approach towards adriamycin. J Chem Soc, Perkin Trans 1:643–647

    Article  Google Scholar 

  • Bebernitz GR, Argentieri G, Battle B, Brennan C, Balkan B, Burkey BF, Eckhardt M, Gao JP, Kapa P, Strohschein RJ, Schuster HF, Wilson M, Xu DD (2001) The effect of 1,3-diaryl-[1H]-pyrazole-4-acetamides on glucose utilization in ob/ob mice. J Med Chem 44(16):2601–2611

    Article  CAS  PubMed  Google Scholar 

  • Bing RJ, Lomnicka M (2002) Why do cyclo-oxygenase-2 inhibitors cause cardiovascular events? J Am Coll Cardiol 39(3):521–522

    Article  CAS  PubMed  Google Scholar 

  • Bouabdallah I, AitM’Barek L, Zyad A, Ramdani A, Zidane I, Melhaoui A (2007) New pyrazolic compounds as cytotoxic agents. Nat Prod Res 21(4):298–302

    Article  CAS  PubMed  Google Scholar 

  • Chang KT, Choi YH, Kim SH, Yoon YJ, Lee WS (2002) Regioselective synthesis of pyrazoles via the ring cleavage of 3-substituted N-alkylated 3-hydroxyisoindolin-1-ones. J Chem Soc, Perkin Trans 1:207–210

    Google Scholar 

  • Chowdhury MA, Abdellatif KRA, Dong Y, Das D, Suresh MR, Knaus EE (2009) Synthesis of celecoxib analogues possessing a N-difluoromethyl-1,2-dihydropyrid-2-one 5-lipoxygenase pharmacophore: biological evaluation as dual Inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity. J Med Chem 52(6):1525–1529

    Article  CAS  PubMed  Google Scholar 

  • Elgemeie GH, Zaghary WA, Amin KM, Nasr TM (2005) New trends in synthesis of pyrazole nucleosides as new antimetabolites. Nucleosides Nucleotides Nucleic Acids 24(8):1227–1247

    Article  CAS  PubMed  Google Scholar 

  • Farag AM, Mayhoub AS, Barakat SE, Bayomi AH (2008) Regioselective synthesis and antitumor screening of some novel N-phenylpyrazole derivatives. Bioorg Med Chem 16(2):881–889

    Article  CAS  PubMed  Google Scholar 

  • Finn J, Mattia K, Morytko M, Ram S, Yang YF, Wu XM, Mak E, Gallant P, Keith D (2003) Discovery of a potent and selective series of pyrazole bacterial methionyl-tRNA synthetase inhibitors. Bioorg Med Chem Lett 13(13):2231–2234

    Article  CAS  PubMed  Google Scholar 

  • Genin MJ, Biles C, Keiser BJ, Poppe SM, Swaney SM, Tarpley WG, Yagi Y, Romero DL (2000) Novel 1,5-diphenylpyrazole nonnucleoside HIV-1 reverse transcriptase inhibitors with enhanced activity versus the delavirdine-resistant P236L mutant: lead identification and SAR of 3- and 4-substituted derivatives. J Med Chem 43:1034–1040

    Article  CAS  PubMed  Google Scholar 

  • Giacomelli G, Porcheddu A, Salaris M, Taddei M (2003) Microwave-assisted solution-phase synthesis of 1,4,5-trisubstituted pyrazoles. Eur J Org Chem 3:537–541

    Article  Google Scholar 

  • Habeeb AG, Rao PNP, Knaus EE (2001) Design and synthesis of celecoxib and rofecoxib analogues as selective cyclooxygenase-2 (COX-2) inhibitors: replacement of sulfonamide and methylsulfonyl pharmacophores by an azido bioisostere. J Med Chem 44(18):3039–3042

    Article  CAS  PubMed  Google Scholar 

  • Insuasty B, Tigreros A, Orozco F, Quiroga J, Abonía R, Nogueras M, Sanchez A, Cobo J (2010) Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4-(3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents. Bioorg Med Chem 18(14):4965–4974

    Article  CAS  PubMed  Google Scholar 

  • Joksović MD, Bogdanović G, Kojić V, Szécsényi KM, Leovac VM, Jakimov D, Trifunović S, Marković V, Joksović L (2010) Synthesis, cytotoxic activity, and thermal studies of novel N-[(1,3-diphenylpyrazol-4-yl)methyl] α-amino acids. J Heterocyclic Chem 47:850–856

    Article  Google Scholar 

  • Katritziky AR, Rees CW, Scriven EFV (1996) Comprehensive Heterocyclic Chemistry II, vol 3. Pergamon Press, Oxford, pp 1–75

    Google Scholar 

  • Klapars A, Antilla JC, Huang X, Buchwald SL (2001) A general and efficient copper catalyst for the amidation of aryl halides and the N-arylation of nitrogen heterocycles. J Am Chem Soc 123(21):7727–7729

    Article  CAS  PubMed  Google Scholar 

  • Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384:644–648

    Article  CAS  PubMed  Google Scholar 

  • Li SH, Huang HP, Yu SY, Li XP (2006) Design and synthesis of polypyrazolyl compounds as a new type of versatile building blocks. Chin J Chem 24(9):1225–1229

    Article  CAS  Google Scholar 

  • Lozan V, Solntsev PY, Leibeling G, Domasevitch KV, Kersting B (2007) Tetranuclear nickel complexes composed of pairs of dinuclear LNi2 fragments linked by 4,4′-bipyrazolyl, 1,4-bis(4′-pyrazolyl)benzene, and 4,4′-bipyridazine: synthesis, structures, and magnetic properties. Eur J Inorg Chem 20:3217–3226

    Article  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Peruncheralathan S, Khan TA, Ila H, Junjappa H (2005) Regioselective synthesis of 1-aryl-3,4- substituted/annulated-5-(methylthio)pyrazoles and 1-aryl-3-(methylthio)-4,5-substituted/annulated pyrazoles. J Org Chem 70:10030–10035

    Article  CAS  PubMed  Google Scholar 

  • Prakash O, Kumar R, Parkash V (2008) Synthesis and antifungal activity of some new 3-hydroxy-2-(1-phenyl-3-aryl-4-pyrazolyl) chromones. Eur J Med Chem 43(2):435–440

    Article  CAS  PubMed  Google Scholar 

  • Ramirez F, Bhatia SB, Patwardhan AV, Smith CP (1967) Molecular rearrangements during solvolyses of pentaoxyphosphoranes. polyketones derived from phthalaldehyde and terephthalaldehyde. J Org Chem 32:3547–3553

    Article  CAS  Google Scholar 

  • Rathelot P, Azas N, El-Kashef H, Delmas F, Giorgio CD, Timon-David P, Maldonado J, Vanelle P (2002) 1,3-Diphenylpyrazoles: synthesis and antiparasitic activities of azomethine derivatives. Eur J Med Chem 37(8):671–679

    Article  CAS  PubMed  Google Scholar 

  • Regan J, Breitfelder S, Cirillo P, Gilmore T, Graham AG, Hickey E, Klaus B, Madwed J, Moriak M, Moss N, Pargellis C, Pav S, Proto A, Swinamer A, Tong L, Torcellini C (2002) Pyrazole urea-based inhibitors of p38 MAP kinase: from lead compound to clinical candidate. J Med Chem 45(14):2004–3008

    Article  Google Scholar 

  • Rostom SAF, Shalaby MA, El-Demellawy MA (2003) Polysubstituted pyrazoles, part 5.Synthesis of new 1-(4-chlorophenyl)-4-hydroxy-1H-pyrazole-3-carboxylic acid hydrazide analogs and some derived ring systems. A novel class of potential antitumor and anti-HCV agents. Eur J Med Chem 38(11–12):959–974

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Dreger A (2011) Recent advances in the chemistry of pyrazoles. Properties, biological activities, and syntheses. Curr Org Chem 15:1423–1463

    Article  CAS  Google Scholar 

  • Sivaprasad G, Perumal PT, Prabavathy VR, Mathivanan N (2006) Synthesis and anti-microbial activity of pyrazolylbisindoles-promising anti-fungal compounds. Bioorg Med Chem Lett 16:6302–6305

    Article  CAS  PubMed  Google Scholar 

  • Son SU, Park IK, Park J, Hyeon T (2004) Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides. Chem Commun 7:778–779

    Article  Google Scholar 

  • Stauffer SR, Coletta CJ, Tedesco R, Nishiguchi G, Carlson K, Sun J, Katzenellenbogen BS, Katzenellenbogen JA (2000) Pyrazole ligands: structure–affinity/activity relationships and estrogen receptor-α-selective agonists. J Med Chem 43(14):4934–4947

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Tan J, Zhang L (2000) Regioselective synthesis of unsymmetrical 3,5-dialkyl-1-arylpyrazoles. Org Lett 2:3107–3109

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Cai Q, Ma D (2005) Amino acid promoted CuI-catalyzed C–N bond formation between aryl halides and amines or N-containing heterocycles. J Org Chem 70:5164–5173

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research 973 Program (Grant No. 2010CB534913), Hebei Provincial Natural Science Foundation of China-Shijiazhuang Pharmaceutical Group (CSPC) Foundation (B2011201174), Hebei Province Nature Science Fund for Distinguished Young Scholars (B2011201164), the Nature Science Fund of Hebei Province (B2011201135), the Key Basic Research Special Foundation of Science Technology Ministry of Hebei Province (11966412D, 12966418D), and Open Fund of Key Laboratory of Chemical Biology of Hebei Province (No. 09265631D-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenghui Li or Jinchao Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Li, S., Tang, Y. et al. Design, synthesis, and biologic evaluation of some novel N-arylpyrazole derivatives as cytotoxic agents. Med Chem Res 22, 5610–5616 (2013). https://doi.org/10.1007/s00044-013-0552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0552-1

Keywords

Navigation