Skip to main content
Log in

Design, synthesis and antidepressant activity evaluation 2′-hydroxy-4′,6′-diisoprenyloxychalcone derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In this study, 14 2′-hydroxy-4′,6′-diisoprenyloxychalcone compounds were synthesized and their antidepressant activities were evaluated using the forced swimming test. The pharmacological results showed that six compounds significantly reduced immobility times during the forced swimming test at a dose of 10 mg/kg, indicative of antidepressant activity. Among these, three compounds (4d, 4e, and 4g) exhibited better antidepressant activity, with reduced immobility time by 38.3, 34.0, and 27.4 %, respectively. For explanation of the putative mechanism of action, compounds 4e, 4g were tested in chemical induced models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An L, Zhang YZ, Jiang N, Liu XM, Zhao N, Yuan L, Li YF (2008) Role for serotonin in the antidepressant-like effect of a flavonoid extract of Xiaobuxin-Tang. Pharmacol Biochem Behav 89:572–580

    Article  CAS  PubMed  Google Scholar 

  • Batovska D, Parushev S, Slavova A, Bankova V, Tsvetkova I, Ninova M, Najdenski H (2007) Study on the substituents’ effects of a series of synthetic chalcones against the yeast Candida albicans. Eur J Med Chem 42:87–92

    Article  CAS  PubMed  Google Scholar 

  • Bourin M, Chenu F, Ripoll N, David DJ (2005) A proposal of decision tree to screen putative antidepressants using forced swim and tail suspension tests. Behav Brain Res 164:266–269

    Article  CAS  PubMed  Google Scholar 

  • Chimenti F, Fioravanti R, Bolasco A, Chimenti P, Secci D, Rossi F, Yánez M, Orallo F, Ortuso F, Alca-ro S (2009) Chalcones: a valid scaffold for monoamine oxidases inhibitors. J Med Chem 52:2818–2824

    Article  CAS  PubMed  Google Scholar 

  • Corne SJ, Pickering RW, Warner BT (1963) A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br J Pharmacol Chemother 20:106–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deng XQ, Dong ZQ, Song MX, Shu B, Wang SB, Quan ZS (2012) Synthesis and anticonvulsant activities of some triazolothiadiazole derivatives. Arch Pharm (Weinheim) 345:565–573

    Article  CAS  Google Scholar 

  • Elhwuegi AS (2004) Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry 28:435–451

    Article  CAS  PubMed  Google Scholar 

  • Go ML, Wu X, Liu XL (2005) Chalcones: an update on cytotoxic and chemoprotective properties. Curr Med Chem 12:481–499

    Article  CAS  PubMed  Google Scholar 

  • Goodwin GM, Green AR, Johnson P (1984) 5-HT2 receptor characteristics in frontal cortex and 5-HT2 receptor-mediated head-twitch behaviour following antidepressant treatment to mice. Br J Pharmacol 83:235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanna MM, Eida NM, Georgea RF, Safwat HM (2007) Synthesis of some tropane derivatives of anticipated activity on the reuptake up norepinephrine and/or serotonin. Bioorg Med Chem 15:7765–7772

    Article  CAS  PubMed  Google Scholar 

  • Lahtchev KL, Batovska DI, Parushev SP, Ubiyvovk VM, Sibirny AA (2008) Antifungal activity of chalcones: a mechanistic study using various yeast strains. Eur J Med Chem 43:2220–2228

    Article  CAS  PubMed  Google Scholar 

  • Lapin IP (1980) Adrenergic nonspecific potentiation of yohimbine toxicity in mice by antidepressants and related drugs and antiyohimbine action of antiadrenergic and serotonergic drugs. Psychopharmacology 70:179–185

    Article  CAS  PubMed  Google Scholar 

  • Lopez AD, Murray CC (1998) The global burden of disease, 1990–2020. Nat Med 4:1241–1243

    Article  CAS  PubMed  Google Scholar 

  • Machado DG, Bettio LE, Cunha MP, Santos AR, Pizzolatti MG, Briqhente IM, Rodriques AL (2008) Antidepressant-like effect of rutin isolated from the ethanolic extract from Schinus molle L. in mice: evidence for the involvement of the serotonergic and noradrenergic systems. Eur J Pharmacol 587:163–168

    Article  CAS  PubMed  Google Scholar 

  • Meyer C (2004) Depressive disorders were the fourth leading cause of global disease burden in the year 2000. Evid Based Ment Health 7:123–127

    Article  PubMed  Google Scholar 

  • Millan MJ (2004) The role of monamines in the actions of established and “novel” antidepressant agents: a critical review. Eur J Pharmacol 200:371–384

    Article  Google Scholar 

  • Nishida J, Gao H, Kawabata J (2007) Synthesis and evaluation of 2′,4′,6′-trihydroxychalcones as a new class of tyrosinase inhibitors. Bioorg Med Chem 15:2396–2402

    Article  Google Scholar 

  • Paulke A, Nöldner M, Schubert-Zsilavecz M, Wurqlics M (2008) St. John’s wort flavonoids and their metabolites show antidepressant activity and accumulate in brain after multiple oral doses. Pharmazie 63:296–302

    CAS  PubMed  Google Scholar 

  • Petit-Demouliere B, Chenu F, Bourin M (2005) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl) 177:2 45–255

    Google Scholar 

  • Porsolt RD (1981) Behavioural despair. In: Enna SJ, Malick JB, Richelson (eds) Antidepressants: neurochemical behavioral and clinical perspectives. E. Raven Press, New York, pp 129–139

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  • Rao GV, Swamy BN, Chandregowda V, Reddy GC (2009) Synthesis of (±) abyssinone I and related compounds: their antioxidant and cytotoxic activities. Eur J Med Chem 44:2239–2245

    Article  CAS  PubMed  Google Scholar 

  • Richelson E (2002) The clinical relevance of antidepressant interaction with neurotransmitter transporters and teceptors. Psychopharmacol Bull 36:133–150

    PubMed  Google Scholar 

  • Schechter LE, Ring RH, Beyer CE, Hughes ZA, Khawaja X, Malberg JE, Rosenzweig-Lipson S (2005) Innovative approaches for the development of antidepressant drugs: current and future strategies. NeuroRx 2:590–611

    Article  PubMed Central  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  • Sui X, Quan YC, Chang Y, Zhang RP, Xu YF, Guan LP (2012) Synthesis and studies on antidepressant activity of 2′,4′,6′-trihydroxychalcone derivatives. Med Chem Res 21:1290–1296

    Article  CAS  Google Scholar 

  • Trivedi JC, Bariwal JB, Upadhyay KD, Naliapara YT, Soshi SK, Pannecouque CC, De Clercq E, Shah AK (2007) Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity. Tetrahedron Lett 48:8472–8474

    Article  CAS  Google Scholar 

  • Vogel S, Ohmayer S, Brunner G, Heilmann J (2008) Natural and non-natural prenylate chalcones: synthesis, cytotoxicity and anti-oxidative activity. Bioorg Med Chem 16:4286–4293

    Article  CAS  PubMed  Google Scholar 

  • Vogel S, Barbic M, Jürgenliemk G, Heilmann J (2010) Synthesis, cytotoxicity, anti-oxidative and anti-inflammatory activity of chalcones and influence of A-ring modifications on the pharmacological effect. Eur J Med Chem 45:2206–2213

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Hu XY, Zhao ZY, Liu P, Hu Y, Zhou J, Zhou D, Wang Z, Guo D, Guo H (2008) Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice. Prog Neuropsychopharmacol Biol Psychiatry 32:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Winans KA, King DA, Rao V, Bertozzi CR (1999) A chemically synthesized version of the insect antibacterial glycopeptide, diptericin, disrupts bacterial membrane integrity. Biochemistry 38:11700–11710

    Article  CAS  PubMed  Google Scholar 

  • Yi LT, Li JM, Li YC, Pan Y, Xu Q, Kong LD (2008) Antidepressant-like behavioral and neurochemical effects of the citrus-associated chemical apigenin. Life Sci 82:741–751

    Article  CAS  PubMed  Google Scholar 

  • Zhao LM, Jin HS, Sun LP, Piao HR, Quan ZS (2005) Synthesis and evaluation of antiplatelet activity of trihydroxychalcone derivatives. Bioorg Med Chem Lett 15:5027–5029

    Article  CAS  PubMed  Google Scholar 

  • Zhao DH, Zhang YZ, Zheng ZH (2010) Synthesis and studies on antidepressant effect of 2′,4′-dihyoxylchalcone. Shi Zhen Med Mater Med Res 21:1115–1116

    CAS  Google Scholar 

  • Zhao DH, Sui X, QU YL, Yang LY, Wang X, Guan LP (2011a) Synthesis and studies on antidepressant effect of 5,7-dihydroxyflavanone derivatives. Asian J Chem 23:1129–1132

    Google Scholar 

  • Zhao LM, Jin HS, Wan LJ, Zhang LM (2011b) General and highly α-regioselective zinc-mediated prenylation of aldehydes and ketones. J Org Chem 76:1831–1837

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30960458), the Natural Science Foundation of Zhejiang Province of China (No. LY12C19005). Zhejiang Marine Biotechnology Innovation Team (ZMBIT) (2010R50029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Ping Guan or Dong-Hai Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, LP., Zhao, DH., Chang, Y. et al. Design, synthesis and antidepressant activity evaluation 2′-hydroxy-4′,6′-diisoprenyloxychalcone derivatives. Med Chem Res 22, 5218–5226 (2013). https://doi.org/10.1007/s00044-013-0517-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0517-4

Keywords

Navigation