Skip to main content

Advertisement

Log in

Prediction of tyrosinase inhibition for drug design using the genetic algorithm–multiple linear regressions

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Modeling inhibition data for a series of most potent tyrosinase inhibitors for hyper-pigmentation treatment was done with quantitative structure–activity relationship (QSAR). In this report, multiple linear regression (MLR) methodology coupled with feature selection method, genetic algorithm (GA), was applied to derive QSAR models. A model with seven selected descriptors was obtained by the database that consisted of 49 compounds. The power of the model for prediction was verified with the leave-one-out and leave-group-out cross-validation test, which have values of 0.766 and 0.795, respectively. Moreover, the statistical parameters provided by the GA–MLR model (\( R_{\text{train}}^{ 2} \) = 0.85, \( R_{\text{test}}^{ 2} \) = 0.84, and \( F_{\text{train}}^{ 2} \) = 24.498) lead to a better understanding of the structural requirements of designing novel potent tyrosinase inhibitors. The study showed that the number of six-membered rings, the branching of a molecule, the van der Waals volume of atoms, the lopping centric index, the global charge transfer in a molecule and atomic masses are the main criteria in the inhibitory activity of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal VK, Khadikar PV (2001) QSAR prediction of toxicity of nitrobenzenes. Bioorg Med Chem 9:3035–3040

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Gromiha MM (2003) Design and training of a neural network for predicting the solvent accessibility of proteins. J Comput Chem 24:1313–1320

    Article  CAS  PubMed  Google Scholar 

  • Aires-de-Sousa J, Hemmer MC, Gasteiger J (2002) Prediction of 1H NMR chemical shifts using neural networks. Anal Chem 74:80–90

    Article  CAS  PubMed  Google Scholar 

  • Alijanianzadeh M, Saboury AA (2007) Temperature dependence of activation and inhibition of mushroom tyrosinase by ethyl xanthate. Bull Korean Chem Soc 28:758–762

    Article  CAS  Google Scholar 

  • Alijanianzadeh M, Saboury AA, Mansuri-Torshizi H, Haghbeen K, Moosavi-Movahedi AA (2007) The inhibitory effect of some n-alkyl xanthates on the cresolase and catecholase activities of mushroom tyrosinase. J Enzyme Inhib Med Chem 22:239–246

    Article  CAS  PubMed  Google Scholar 

  • Baek YS, Ryu YB, CurtisLong MJ, Ha TJ, Rengasamy R, Yang MS, Park KH (2008) Tyrosinase inhibitory effects of 1,3-diphenylpropanes from Broussonetia kazinoki. Bioorg Med Chem 17:35–41

    Article  PubMed  Google Scholar 

  • Bao K, Dai Y, Zhu ZB, Tu FJ, Zhang WG, Yao XS (2010) Design and synthesis of biphenyl derivatives as mushroom tyrosinase inhibitors. Bioorg Med Chem 18:6708–6714

    Article  CAS  PubMed  Google Scholar 

  • Bonchev D (1983) Information theoretic indices for characterization of chemical structures. RSP/Wiley, Chichetser

    Google Scholar 

  • Casañola-Martin GM, Hassan Khan MT, Marrero-Ponce Y, Ather A, Sultankhodzhaev MN, Torrens F (2006) New tyrosinase inhibitors selected by atomic linear indices-based classification models. Bioorg Med Chem Lett 16:324–330

    Article  PubMed  Google Scholar 

  • Chase MR, Raina K, Bruno J, Sugumaran M (2000) Purification, characterization and molecular cloning of prophenoloxidases from Sarcophaga bullata insect. Biochem Mol Biol 30:953–967

    CAS  Google Scholar 

  • Cho SJ, Seop RJ, Suck WS, Han KS, Park KD (2006) N-benzylbenzamides: a new class of potent tyrosinase inhibitors. Bioorg Med Chem Lett 16:2682–2684

    Article  CAS  PubMed  Google Scholar 

  • Decker H, Tuczek F (2000) Phenoloxidase activity of hemocyanins: activation, substrate orientation and molecular mechanism. Trends Biochem Soc 25:392–397

    Article  CAS  Google Scholar 

  • Depczynski U, Frost VJ, Molt K (2000) Genetic algorithms applied to the selection of factors in principal component regression. Anal Chimica Acta 420:217–227

    Article  CAS  Google Scholar 

  • Di Marzio W, Galassi S, Todeschini R, Consolaro F (2001) Traditional versus WHIM molecular descriptors in QSAR approaches applied to fish toxicity studies. Chemosphere 44:401–406

    Article  PubMed  Google Scholar 

  • Duck SW, Bae RY, Curtis-Long MJ, Lee CW, Won RH, Chang JK, Hun Park K (2010) Evaluation of anti-pigmentary effect of synthetic sulfonylamino chalcone. Eur J Med Chem 45:2010–2017

    Article  Google Scholar 

  • Friedman M (1996) Food browning and its prevention: an overview. J Agric Food Chem 44:631–653

    Article  CAS  Google Scholar 

  • Ghani U, Ullah N (2010) New potent inhibitors of tyrosinase: novel clues to binding of 1,3,4-thiadiazole-2(3H)-thiones, 1,3,4-oxadiazole-2(3H)-thiones, 4-amino-1,2,4-triazole-5(4H)-thiones, and substituted hydrazides to the dicopper active site. Bioorg Med Chem 18:4042–4048

    Article  CAS  PubMed  Google Scholar 

  • Gheibi N, Saboury AA, Mansuri-Torshizi H, Haghbeen K, Moosavi-Movahedi AA (2005) The inhibition effect of some n-alkyl dithiocarbamates on Mushroom tyrosinase. J Enzyme Inhib Med Chem 20:393–399

    Article  CAS  PubMed  Google Scholar 

  • Gheibi N, Saboury AA, Haghbeen K, Rajabi F, Pahlavani AA (2009) Dual effects of aliphatic carboxylic acids on cresolase and catecholase reactions of mushroom tyrosinase. J Enzyme Inhib Med Chem 24:1076–1081

    Article  CAS  PubMed  Google Scholar 

  • Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Singh M, Madan AKJ (1999) A novel topological descriptor for predicting biological activity. J Chem Inf Comput Sci 39:272–277

    Article  CAS  PubMed  Google Scholar 

  • Habibi-Yangjeh A, Pourbasheer E, Danandeh-Jenagharad M (2008) Prediction of melting point for drug-like compounds using principal component–genetic algorithm–artificial neural network. Bull Korean Chem Soc 29:833–841

    Article  CAS  Google Scholar 

  • Habibi-Yangjeh A, Pourbasheer E, Danandeh-Jenagharad M (2009) Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen-containing compounds in water. Monatshefte für Chemie Chem Monthly 140:15–27

    Article  CAS  Google Scholar 

  • Hemmateenejad B, Javidnia K, Nematollahi M, Elyasi M (2009) QSAR studies on the antiviral compounds of natural origin. J Iran Chem Soc 6:420–435

    Article  CAS  Google Scholar 

  • Hunger J, Huttner G (1999) Optimization and analysis of force field parameters by combination of genetic algorithms and neural networks. J Comput Chem 20:455–471

    Article  CAS  Google Scholar 

  • Hyper Chem. (2002) Release 7.03 for Windows, molecular modeling system. Hypercube, Inc., Gainesville, FL. http://www.hyper.com/. Accessed 10 Mar 2009

  • Jaiswal M, Khadikar PV, Scozzafava A, Supuran CT (2004) Carbonic anhydrase inhibitors: the first QSAR study on inhibition of tumor-associated isoenzyme IX with aromatic and heterocyclic sulfonamides. Bioorg Med Chem Lett 14:3283–3290

    Article  CAS  PubMed  Google Scholar 

  • Jun N, Hong G, Jun K (2007) Synthesis and evaluation of 2,4,6-trihydroxychalcones as a new class of tyrosinase inhibitors. Bioorg Med Chem 15:2396–2402

    Article  CAS  PubMed  Google Scholar 

  • Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chemico-Biol Interac 171:165–176

    Article  CAS  Google Scholar 

  • Karbassi F, Saboury AA, Hassan Khan MT, Iqbal Choudhary M, Saifi ZS (2004) Mushroom tyrosinase inhibition by two potent uncompetitive inhibitors. J Enzyme Inhib Med Chem 19:349–353

    Article  CAS  PubMed  Google Scholar 

  • Khajehsharifi H, Pourbasheer E (2008) Genetic-algorithm-based wavelength selection in multicomponent spectrophotometric determination by PLS: application on ascorbic acid and uric acid. J Chin Chem Soc 55:163–170

    Article  CAS  Google Scholar 

  • Khan MTH, Choudhary MI, Ather A, Rahman AU (2006) Modelling of the mushroom tyrosinase and its molecular dynamic (MD) simulations experiments in room and elevated temperatures and the docking interactions with nucleotides. Minerva Biotech 18:181–184

    Google Scholar 

  • Knaggs MH, McGuigan C, Harris SA, Heshmati P, Cahard D, Gilbert IH, Balzarini J (2000) A QSAR study investigating the effect of l-alanine ester variation on the anti-HIV activity of some phosphoramidate derivatives of d4T. Bioorg Med Chem Lett 10:2075–2078

    Article  CAS  PubMed  Google Scholar 

  • Kubo WLI (2004) QSAR and kinetics of the inhibition of benzaldehyde derivatives against Sacrophaga neobelliaria phenoloxidase. Bioorg Med Chem 12:701–713

    Article  PubMed  Google Scholar 

  • Likhitwitayawuid K, Sornsute A, Sritularaka B, Ploypradith P (2006) Chemical transformations of oxyresveratrol (trans-2,4,3′,5′-tetrahydroxystilbene) into a potent tyrosinase inhibitor and a strong cytotoxic agent. Bioorg Med Chem Lett 16:5650–5653

    Article  CAS  PubMed  Google Scholar 

  • Mahmood Janlou ML, Abdolmaleki P, Tajbakhsh M, Amanlou P, Eidi A (2012) Quantitative structure–activity relationships study of tyrosinase inhibitors using logistic regression and artificial neural networks. J Iran Chem Soc 9:643–653

    Article  CAS  Google Scholar 

  • Marrero PY (2003) Total and local quadratic indices of the molecular pseudograph’s atom adjacency matrix: applications to the prediction of physical properties of organic compounds. Molecules 8:687–726

    Article  Google Scholar 

  • Marrero-Ponce Y, Hassan Khan MT, Casañola-Martín GM, Ather A, Sultankhodzhaev MN, Torrens F, Rotondo R (2007a) Prediction of tyrosinase inhibition activity using atom-based bilinear indices. Chem Med Chem 2:449–478

    Article  CAS  PubMed  Google Scholar 

  • Marrero-Ponce Y, Hassan Khan MT, Casañola-Martín GM, Ather A, Sultankhodzhaev MN, Torrens F (2007b) Bond-based 2D TOMOCOMD-CARDD approach for drug discovery: aiding decision-making in ‘in silico’ selection of new lead tyrosinase inhibitors. J Comput-Aided Mol Des 21:167–188

    Article  CAS  PubMed  Google Scholar 

  • Moosavi-Movahedi AA, Safarian S, Hakimelahi GH, Ataei G, Ajloo D, Panjehpour S, Riahi S, Mousavi MF, Mardanyan S, Soltani N, Khalafi-Nezhad A, Sharghi H, Moghadamnia H, Saboury AA (2004) QSAR analysis for ADA upon interaction with a series of adenine derivatives as inhibitors. Nucleos Nucleot Nucleic Acids 23:613–624

    Article  CAS  Google Scholar 

  • Murumkar PR, Giridhar R, Yadav MR (2008) 3D-quantitative structure–activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-alpha converting enzyme. Chem Biol Drug Des 71:363–373

    Article  CAS  PubMed  Google Scholar 

  • Noh JM, Kwak SY, Seo HS, Seo JH, Kim BG, Lee YS (2009) Kojic acid-amino acid conjugates as tyrosinase inhibitors. Bioorg Med Chem Lett 19:5586–5589

    Article  CAS  PubMed  Google Scholar 

  • Pasha FA, Neaz MM, Cho SJ, Kang SB (2007) Quantitative structure–activity relationship (QSAR) study of estrogen derivatives based on descriptors of energy and softness. Chem Biol Drug Des 70:520–529

    Article  CAS  PubMed  Google Scholar 

  • Saboury AA (2009) Enzyme inhibition and activation: a general theory. J Iran Chem Soc 6:219–229

    Article  CAS  Google Scholar 

  • Saboury AA, Zolghadri S, Haghbeen K, Moosavi-Movahedi AA (2006) The inhibitory effect of benzenethiol on the cresolase and catecholase activities of mushroom tyrosinase. J Enzyme Inhib Med Chem 21:711–717

    Article  CAS  PubMed  Google Scholar 

  • Shapiro S, Guggenheim B (1998) Inhibition of oral bacteria by phenolic compounds. Part 1. QSAR analysis using molecular connectivity. Quant Struct Act Relat 17:327–337

    Article  CAS  Google Scholar 

  • Sharma BK, Pilania P, Singh P, Sharma S, Prabhakar YS (2009) CP-MLR directed QSAR study of carbonic anhydrase inhibitors: sulfonamide and sulfamate inhibitors. Central Eur J Chem 7:909–922

    Article  CAS  Google Scholar 

  • Takahashi S, Kamiya T, Saeki K, Nezu T, Takeuchi S, Takasawa R, Sunaga S, Yoshimori A, Ebizuka S, Abe T, Tanuma S (2010) Structural insights into the hot spot amino acid residues of mushroom tyrosinase for the bindings of thujaplicins. Bioorg Med Chem 18:8112–8118

    Article  CAS  PubMed  Google Scholar 

  • Taylor SL, Bush RK (1998) Sulfites as food ingredients. Food Tech 40:47–52

    Google Scholar 

  • Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Todeschini R, Consonni V, Mauri A, Pavan M (2005) DRAGON, version 5.3 for Windows, software for the calculation of molecular descriptors. Talete srl, Milan, Italy. http://www.talete.mi.it/products/dragon_description.htm.. Accessed 10 Apr 2009

  • Toropov AA, Benfenati E (2006a) QSAR models for daphnia toxicity of pesticides based on combinations of topological parameters of molecular structures. Bioorg Med Chem 14:2779–2788

    Google Scholar 

  • Toropov AA, Benfenati E (2006b) QSAR models of quail dietary toxicity based on the graph of atomic orbitals. Bioorg Med Chem Lett 16:1941–1943

    Google Scholar 

  • Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSAR models. QSAR Comb Sci 22(1):69–77

    Article  CAS  Google Scholar 

  • Waller CL, Bradley MP (1999) Development and validation of a novel variable selection technique with application to multidimensional quantitative structure–activity relationship studies. J Chem Inf Comput Sci 39:345–355

    Article  CAS  Google Scholar 

  • Wang Y, Wang XW, Cheng YY (2006) A computational approach to botanical drug design by modeling quantitative composition–activity relationship. Chem Biol Drug Des 68:166–172

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Hagler A (2002) Chemoinformatics drug discovery. Molecules 7:566–600

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of the Research Councils of the University of Tehran, and Tehran University of Medical Sciences are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ganjali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazl, R., Ganjali, M.R., Derakhshankhah, H. et al. Prediction of tyrosinase inhibition for drug design using the genetic algorithm–multiple linear regressions. Med Chem Res 22, 5453–5465 (2013). https://doi.org/10.1007/s00044-012-0440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0440-0

Keywords

Navigation