Skip to main content
Log in

New Error Bounds for Legendre Approximations of Differentiable Functions

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper we present a new perspective on error analysis for Legendre approximations of differentiable functions. We start by introducing a sequence of Legendre–Gauss–Lobatto polynomials and prove their theoretical properties, including an explicit and optimal upper bound. We then apply these properties to derive a new explicit bound for the Legendre coefficients of differentiable functions. Building on this, we establish an explicit and optimal error bound for Legendre approximations in the \(L^2\) norm and an explicit and optimal error bound for Legendre approximations in the \(L^{\infty }\) norm under the condition that their maximum error is attained in the interior of the interval. Illustrative examples are provided to demonstrate the sharpness of our new results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Antonov, V.A., Holševnikov, K.V.: An estimate of the remainder in the expansion of the generating function for the Legendre polynomials (Generalization and improvement of Bernstein’s inequality). Vestnik Leningrad Univ. Math. 13, 163–166 (1981)

    MATH  Google Scholar 

  2. Babuška, I., Hakula, H.: Pointwise error estimate of the Legendre expansion: the known and unknown features. Comput. Methods Appl. Mech. Eng. 345(1), 748–773 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, New York (2006)

    Book  MATH  Google Scholar 

  4. Davis, P.J.: Interpolation and Approximation. Dover Publications, New York (1975)

    MATH  Google Scholar 

  5. Durand, L.: Nicholson-Type Integrals for Products of Gegenbauer Functions and Related Topics. Theory and Application of Special Functions, pp. 353–374. Academic Press, New York (1975)

    Google Scholar 

  6. Ern, A., Guermond, J.-L.: Finite Elements I: Approximation and Interpolation Texts in Applied. Mathematics, vol. 72. Springer, Cham (2021)

    Google Scholar 

  7. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, London (2004)

    Book  MATH  Google Scholar 

  8. Jackson, D.: The Theory of Approximation, vol. 11. American Mathematical Society Colloquium Publications, New York (1930)

    MATH  Google Scholar 

  9. Krasikov, I.: An upper bound on Jacobi polynomials. J. Approx. Theory 149, 116–130 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, W.-J., Wang, L.-L., Wu, B.-Y.: Optimal error estimates for Legendre expansions of singular functions with fractional derivatives of bounded variation. Adv. Comput. Math. 47, 79 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, Boca Raton (2003)

    MATH  Google Scholar 

  12. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  13. Protter, M.H., Morrey, C.B.: A First Course in Real Analysis, 2nd edn. Springer, New York (1991)

    Book  MATH  Google Scholar 

  14. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms Analysis and Applications. Heidelberg, Springer (2011)

    Book  MATH  Google Scholar 

  15. Szegő, G.: Orthogonal Polynomials, vol. 23. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  16. Trefethen, L.N.: Approximation Theory and Approximation Practice, Extended SIAM, Philadephia (2019)

    Book  MATH  Google Scholar 

  17. Wang, H.-Y.: On the optimal estimates and comparison of Gegenbauer expansion coefficients. SIAM J. Numer. Aanl. 54(3), 1557–1581 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, H.-Y.: A new and sharper bound for Legendre expansion of differentiable functions. Appl. Math. Lett. 85, 95–102 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, H.-Y.: How much faster does the best polynomial approximation converge than Legendre projections? Numer. Math. 147, 481–503 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, H.-Y.: Optimal rates of convergence and error localization of Gegenbauer projections. IMA J. Numer. Anal. (2022). https://doi.org/10.1093/imanum/drac047

    Article  Google Scholar 

  21. Wang, H.-Y.: Analysis of error localization of Chebyshev spectral approximations. SIAM J. Numer. Anal. 61(2), 952–972 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, H.-Y., Xiang, S.-H.: On the convergence rates of Legendre approximation. Math. Comput. 81(278), 861–877 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, H.-Y., Zhang, L.: Jacobi polynomials on the Bernstein ellipse. J. Sci. Comput. 75, 457–477 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, H.-Y., Huybrechs, D., Vandewalle, S.: Explicit barycentric weights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials. Math. Comput. 83(290), 2893–2914 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xiang, S.-H., Liu, G.-D.: Optimal decay rates on the asymptotics of orthogonal polynomial expansions for functions of limited regularities. Numer. Math. 145, 117–148 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xie, Z.-Q., Wang, L.-L., Zhao, X.-D.: On exponential convergence of Gegenbauer interpolation and spectral differentiation. Math. Comput. 82(282), 1017–1036 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 11671160. The author wishes to thank the editor and two anonymous referees for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyong Wang.

Additional information

Communicated by Arieh Iserles.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H. New Error Bounds for Legendre Approximations of Differentiable Functions. J Fourier Anal Appl 29, 42 (2023). https://doi.org/10.1007/s00041-023-10024-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-023-10024-4

Keywords

Mathematics Subject Classification

Navigation