Skip to main content
Log in

The Generalized k-Resultant Modulus Set Problem in Finite Fields

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Let \({\mathbb {F}}_q^d\) be the d-dimensional vector space over the finite field \({\mathbb {F}}_q\) with q elements. Given k sets \(E_j\subset {\mathbb {F}}_q^d\) for \(j=1,2,\ldots , k\), the generalized k-resultant modulus set, denoted by \(\Delta _k(E_1,E_2, \ldots , E_k)\), is defined by \(\Delta _k(E_1,E_2, \ldots , E_k)=\{\Vert \mathbf{x}^1+\mathbf{x}^2+\cdots +\mathbf{x}^k\Vert \in {\mathbb {F}}_q:\mathbf{x}^j\in E_j,\, j=1,2,\ldots , k\},\) where \(\Vert \mathbf{y}\Vert =\mathbf{y}_1^2+ \cdots + \mathbf{y}_d^2\) for \(\mathbf{y}=(\mathbf{y}_1, \ldots , \mathbf{y}_d)\in {\mathbb {F}}_q^d.\) We prove that if \(\prod \nolimits _{j=1}^3 |E_j| \ge C q^{3\left( \frac{d+1}{2} -\frac{1}{6d+2}\right) }\) for \(d=4,6\) with a sufficiently large constant \(C>0\), then \(|\Delta _3(E_1,E_2,E_3)|\ge cq\) for some constant \(0<c\le 1,\) and if \(\prod \nolimits _{j=1}^4 |E_j| \ge C q^{4\left( \frac{d+1}{2} -\frac{1}{6d+2}\right) }\) for even \(d\ge 8,\) then \(|\Delta _4(E_1,E_2,E_3, E_4)|\ge cq.\) This generalizes the previous result in [3]. We also show that if \(\prod \nolimits _{j=1}^3 |E_j| \ge C q^{3\left( \frac{d+1}{2} -\frac{1}{9d-18}\right) }\) for even \(d\ge 8,\) then \(|\Delta _3(E_1,E_2,E_3)|\ge cq.\) This result improves the previous work in [3] by removing \(\varepsilon >0\) from the exponent. The new ingredient in our proof is an improved \(L^3\)-restriction estimate for spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain, J., Katz, N., Tao, T.: A sum-product estimate in finite fields, and applications. Geom. Funct. Anal. 14, 27–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chapman, J., Erdoǧan, M., Hart, D., Iosevich, A., Koh, D.: Pinned distance sets, Wolff’s exponent in finite fields and sum-product estimates. Math. Z. 271, 63–93 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Covert, D., Koh, D., Pi, Y.: On the sums of any $k$ points in finite fields. SIAM J. Discret. Math. 30(1), 367–382 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Covert, D., Koh, D., Pi, Y.: The $k$-resultant modulus set problem on algebraic varieties over finite fields. Finite Fields Appl. 48, 68–86 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdös, P.: On sets of distances of $n$ points. Amer. Math. Mon. 53, 248–250 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education, Inc., New York (2004)

    MATH  Google Scholar 

  7. Guth, L., Katz, N.: On the Erdős distinct distance problem in the plane. Ann. Math. 181, 155–190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hanson, B., Lund, B., Roche-Newton, O.: On distinct perpendicular bisectors and pinned distances in finite fields. Finite Fields Their Appl. 37, 240–264 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hart, D., Iosevich, A., Koh, D., Rudnev, M.: Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture. Trans. Am. Math. Soc. 363(6), 3255–3275 (2011)

    Article  MATH  Google Scholar 

  10. Hart, D., Li, L., Shen, C.: Fourier analysis and expanding phenomena in finite fields. Proc. Am. Math. Soc. 141(2), 461–473 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iosevich, A., Koh, D.: Extension theorems for spheres in the finite field setting. Forum Math. 22(3), 457–483 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iosevich, A., Rudnev, M.: Erdős distance problem in vector spaces over finite fields. Trans. Am. Math. Soc. 359, 6127–6142 (2007)

    Article  MATH  Google Scholar 

  13. Koh, D., Shen, C.: Sharp extension theorems and Falconer distance problems for algebraic curves in two dimensional vector spaces over finite fields. Rev. Mat. Iberoam. 28(1), 157–178 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koh, D., Shen, C.: The generalized Erdős-Falconer distance problems in vector spaces over finite fields. J. Number Theory 132(11), 2455–2473 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koh, D., Sun, H.: Distance sets of two subsets of vector spaces over finite fields. Proc. Am. Math. Soc. 143(4), 1679–1692 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  17. Shparlinski, I.: On the set of distance between two sets over finite fields. Int. J. Math. Math. Sci. 59482, 1–5 (2006)

    Article  MathSciNet  Google Scholar 

  18. Vinh, L.A.: Explicit Ramsey graphs and Erdős distance problem over finite Euclidean and non-Euclidean spaces. Electron. J. Comb. 15, 1 (2008)

    MATH  Google Scholar 

  19. Vinh, L.A.: On the generalized Erdős distance problems over finite fields. J. Number Theory 133(9), 2939–2947 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doowon Koh.

Additional information

Communicated by Alex Iosevich.

Doowon Koh was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(NRF-2015R1A1A1A05001374).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Covert, D., Koh, D. & Pi, Y. The Generalized k-Resultant Modulus Set Problem in Finite Fields. J Fourier Anal Appl 25, 1026–1052 (2019). https://doi.org/10.1007/s00041-018-9619-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-018-9619-1

Keywords

Mathematics Subject Classification

Navigation