Skip to main content
Log in

Phase Retrievable Projective Representation Frames for Finite Abelian Groups

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We consider the problem of characterizing projective representations that admit frame vectors with the maximal span property, a property that allows for an algebraic recovering for the phase-retrieval problem. For a given multiplier \(\mu \) of a finite abelian group G, we show that the representation dimension of any irreducible \(\mu \)-projective representation of G is exactly the rank of the symmetric multiplier matrix associated with \(\mu \). With the help of this result we are able to prove that every irreducible \(\mu \)-projective representation of a finite abelian group G admits a frame vector with the maximal span property, and obtain a complete characterization for all such frame vectors. Consequently the complement of the set of all the maximal span frame vectors for any projective unitary representation of any finite abelian group is Zariski-closed. These generalize some of the recent results about phase-retrieval with Gabor (or STFT) measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev, B., Bandeira, A.S., Fickus, M., Mixon, D.G.: Phase retrieval with polarization. SIAM J. Imaging Sci. 7, 35–66 (2014)

    Article  MATH  Google Scholar 

  2. Backhouse, N.B., Bradley, C.J.: Projective representations of Abelian groups. Proc. Am. Math. Soc. 36, 260–266 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balan, R.: Stability of phase retrievable frames. In: Proceedings of SPIE, Wavelets and Sparsity XV, 88580H (2013)

  4. Balan, R., Wang, Y.: Invertibility and robustness of phaseless reconstruction. Appl. Comput. Harmon. Anal. 38, 469–488 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balan, R., Zou, D.: On Lipschitz analysis and Lipschitz synthesis for the phase retrieval problem. Linear Algebra Appl. 496, 152–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balan, R., Casazza, P.G., Edidin, D.: On signal reconstruction from the absolute value of the frame coefficients. In: Proceedings of SPIE, vol. 5914, pp. 1–8 (2005)

  7. Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20, 345–356 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balan, R., Casazza, P.G., Edidin, D.: Equivalence of reconstruction from the absolute value of the frame coefficients to a sparse representation problem. IEEE Signal Process. Lett. 14(5), 341–345 (2007)

    Article  Google Scholar 

  9. Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Fast algorithms for signal reconstruction without phase. In: Proceedings of SPIE-Wavelets XII, San Diego, vol. 6701, pp. 670111920–670111932 (2007)

  10. Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Painless reconstruction from magnitudes of frame vectors. J. Fourier Anal. Appl. 15, 488–501 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bandeira, A.S., Cahill, J., Mixon, D.G., Nelson, A.A.: Saving phase: injectivity and stability for phase retrieval. Appl. Comput. Harmon. Anal. 37, 106–125 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bandeira, A.S., Chen, Y., Mixon, D.G.: Phase retrieval from power spectra of masked signals. Inf. Inference 3, 83–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bendory, T., Eldar, Y.C.: A least squares approach for stable phase retrieval from short-time Fourier transform magnitude, preprint arXiv:1510.00920 (2015)

  14. Bodmann, B.G., Hammen, N.: Stable phase retrieval with low-redundancy frames. Adv. Comput. Math. 41, 317–33 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bodmann, B.G., Casazza, P.G., Edidin, D., Balan, R.: Frames for Linear Reconstruction Without Phase. CISS Meeting, Princeton, NJ (2008)

    Book  MATH  Google Scholar 

  16. Bojarovska, I., Flinth, A.: Phase retrieval from Gabor measurements. J. Fourier Anal. Appl. 22, 542–567 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Candès, E.J., Li, X.: Solving quadratic equations via PhaseLift when there are about as many equations as unknowns. Found. Comput. Math. 14, 1017–1026 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM J. Imaging Sci. 6, 199–225 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Candès, E.J., Strohmer, T., Voroninski, V.: PhaseLift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66, 1241–1274 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheng, C.: A character theory for projective representations of finite groups. Linear Algebra Appl. 469, 230–242 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheng, C., Fu, J.: On the rings of projective characters of Abelian groups and Dihedral groups, preprint (2016)

  22. Conca, A., Edidin, D., Hering, M., Vinzant, C.: An algebraic characterization of injectivity in phase retrieval. Appl. Comput. Harmon. Anal. 38, 346–356 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eldar, Y.C., Sidorenko, P., Mixon, D.G., Barel, S., Cohen, O.: Sparse phase retrieval from short-time Fourier measurements. IEEE Signal Process. Lett. 22, 638–642 (2015)

    Article  Google Scholar 

  24. Eldar, Y.C., Hammen, N., Mixon, D.: Recent advances in phase retrieval. In: IEEE Signal Processing Magazine, pp. 158–162 (September 2016)

  25. Fickus, M., Mixon, D.G., Nelson, A.A., Wang, Y.: Phase retrieval from very few measurements. Linear Algebra Appl. 449, 475–499 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jaganathan, K., Eldar, Y.C., Hassibi, B.: Phase retrieval: an overview of recent developments. arXiv:1510.07713

  27. Karpilovsky, G.: The Schur Multiplier. London Mathematical Society Monographs. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  28. Li, L., Cheng, C., Han, D., Sun, Q., Shi, G.: Phase retrieval from multiple-window short-time Fourier measurements. IEEE Signal Process. Lett. 24, 372–376 (2017)

    Article  Google Scholar 

  29. Nawab, S.H., Quatieri, T.F., Lim, J.S.: Signal reconstruction from short-time Fourier transform magnitude. IEEE Trans. Acoust. Speech Signal Process. 31, 986–998 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the referees very much for carefully reading the paper and for several elaborate and valuable suggestions. Deguang Han is partially supported by the NSF Grants DMS-1403400 and DMS-1712602, and Lan Li is partially supported by Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JM1046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deguang Han.

Additional information

Communicated by Peter G. Casazza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Juste, T., Brennan, J. et al. Phase Retrievable Projective Representation Frames for Finite Abelian Groups. J Fourier Anal Appl 25, 86–100 (2019). https://doi.org/10.1007/s00041-017-9570-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-017-9570-6

Keywords

Mathematics Subject Classification

Navigation