Skip to main content
Log in

Wave-Shape Function Analysis

When Cepstrum Meets Time–Frequency Analysis

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We propose to combine cepstrum and nonlinear time–frequency (TF) analysis to study multiple component oscillatory signals with time-varying frequency and amplitude and with time-varying non-sinusoidal oscillatory pattern. The concept of cepstrum is applied to eliminate the wave-shape function influence on the TF analysis, and we propose a new algorithm, named de-shape synchrosqueezing transform (de-shape SST). The mathematical model, adaptive non-harmonic model, is introduced and the de-shape SST algorithm is theoretically analyzed. In addition to simulated signals, several different physiological, musical and biological signals are analyzed to illustrate the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The P, Q, R, S, and T are significant landmarks of the ECG signal. The P wave represents atrial depolarization. The Q wave is any downward deflection after the P wave. The R wave follows as an upward deflection, which is spiky, and the S wave is any downward deflection after the R wave. The Q wave, R wave, and S wave form the QRS complex, which corresponds to the ventricular depolarization. The T wave follows the S wave, which represents the ventricular repolarization. The QT interval (respectively RR interval) is the length of the time interval between the start of the Q wave and the end of the T wave of one heart beat (respectively two R landmarks of two consecutive heart beats). We could view the R peak as a surrogate of the cardiac cycle, and hence the RR interval could be viewed as a surrogate of the inverse of the heart rate. See Fig. 4 for an example of the P, Q, R, S, and T landmarks and the RR and QT intervals. For more information about ECG signal, we refer the readers to [21].

  2. The term “cepstrum” is invented by reversing the consonants of the first part of the word “spectrum” in order to signify their difference. Similarly, the word “quefrency” is the inversion of the first part of “frequency”. By definition, the quefrency has the same unit as time.

  3. In the music processing, the high-quefrency part in the cepstrum is related to the pitch while the low-quefrency part to timbre (i.e., sound color).

  4. The phase factor \(e^{i2\pi \xi t}\) in this definition is not always present in the literature, leading to the name modified STFT for this particular form. To slightly abuse the notation, we still call it STFT.

  5. http://www.capnobase.org.

  6. http://www.zhilinzhang.com/spcup2015/.

  7. http://www.music-ir.org/mirex/wiki/MIREX_HOME.

  8. http://www.wolfpark.org/Images/Resources/Howls/Chorus_1.wav.

  9. The absence of even harmonics is (part of) what is responsible for the “warm” or “dark” sound of a clarinet compared to the “bright” sound of a saxophone.

References

  1. Alexandre, P., Lockwood, P.: Root cepstral analysis: a unified view. application to speech processing in car noise environments. Speech Commun. 12(3), 277–288 (1993)

    Article  Google Scholar 

  2. Auger, F., Flandrin, P.: Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Trans. Signal Process. 43(5), 1068–1089 (1995)

    Article  Google Scholar 

  3. Balazs, P., Dörfler, M., Jaillet, F., Holighaus, N., Velasco, G.: Theory, implementation and applications of nonstationary Gabor frames. J. Comput. Appl. Math. 236(6), 1481–1496 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benchetrit, G.: Breathing pattern in humans: diversity and individuality. Respir. Physiol. 122(2–3), 123–129 (2000)

    Article  Google Scholar 

  5. Bogert, B.P., Healy, M.J.R., Tukey, J.W.: The quefrency alanysis of time series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum and shape cracking. Proc. Symp. Time Series Anal. 15, 209–243 (1963)

    Google Scholar 

  6. Chen, Y.-C., Cheng, M.-Y., Wu, H.-T.: Nonparametric and adaptive modeling of dynamic seasonality and trend with heteroscedastic and dependent errors. J. R. Stat. Soc. B 76, 651–682 (2014)

    Article  MathSciNet  Google Scholar 

  7. Chui, C.K., Lin, Y.-T., Wu, H.-T.: Real-time dynamics acquisition from irregular samples—with application to anesthesia evaluation. Anal. Appl. 14(4), 1550016 (2016). doi:10.1142/S0219530515500165

    Article  MathSciNet  MATH  Google Scholar 

  8. Chui, C.K., Mhaskar, H.N.: Signal decomposition and analysis via extraction of frequencies. Appl. Comput. Harmon. Anal. 40(1), 97–136 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cicone, A., Liu, J., Zhou, H.: Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis. Appl. Comput. Harmon. Anal. 41(2), 384–411 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Clifford, G.D., Azuaje, E., McSharry, P.E.: Advanced Methods and Tools for ECG Data Analysis. Artech House Publishers, Norwood (2006)

    Google Scholar 

  11. Coifman, R.R., Steinerberger, S.: Nonlinear phase unwinding of functions. J. Fourier Anal. Appl. (2015). doi:10.1007/s00041-016-9489-3

  12. Daubechies, I., Lu, J., Wu, H.-T.: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30, 243–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Daubechies, I., Wang, Y., Wu, H.-T.: ConceFT: concentration of frequency and time via a multitapered synchrosqueezing transform. Philos. Trans. R. Soc. Lond. A 374(2065), 20150193 (2016)

    Article  MATH  Google Scholar 

  14. Davila, M.I.: Noncontact extraction of human arterial pulse with a commercial digital color video camera [thesis]. Ph.D. thesis, University of Illinois at Chicago, Chicago (2012)

  15. Emiya, V., David, B., Badeau, R.: A parametric method for pitch estimation of piano tones. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Proc., pp. 249–252 (2007)

  16. Flandrin, P.: Time-Frequency/Time-Scale Analysis, Wavelet Analysis and Its Applications, vol. 10. Academic Press Inc., San Diego (1999)

    MATH  Google Scholar 

  17. Fletcher, H.: Normal vibration frequencies of a stiff piano string. J. Acoust. Soc. Am. 36(1), 203–209 (1964)

    Article  Google Scholar 

  18. Fletcher, N.H., Rossing, I.: The Physics of Musical Instruments, 2nd edn. Springer, New York (2010)

    MATH  Google Scholar 

  19. Fossa, A.A., Zhou, M.: Assessing QT prolongation and electrocardiography restitution using a beat-to-beat method. Cardiol. J. 17(3), 230–243 (2010)

    Google Scholar 

  20. Fridericia, L.S.: EKG systolic duration in normal subjects and heart disease patients. Acta Med. Scand. 53, 469–488 (1920)

    Article  Google Scholar 

  21. Goldberger, A.L.: Clinical Electrocardiography: A Simplified Approach. Mosby, St. Louis (2006)

    Google Scholar 

  22. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, PCh., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  23. Guharay, S., Thakur, G., Goodman, F., Rosen, S., Houser, D.: Analysis of non-stationary dynamics in the financial system. Econ. Lett. 121, 454–457 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hermansky, H.: Perceptual linear predictive (PLP) analysis of speech. J. Acoust. Soc. Am. 87(4), 1738–1752 (1990)

    Article  Google Scholar 

  25. Herry, C.L., Frasch, M., Seely, A., Wu, H.-T.: Heart beat classification from single-lead ECG using the synchrosqueezing transform. Physiol. Meas. 38, 171 (2016)

    Article  Google Scholar 

  26. Hormander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1990)

    MATH  Google Scholar 

  27. Hou, T., Shi, Z.: Data-driven time-frequency analysis. Appl. Comput. Harmon. Anal. 35(2), 284–308 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hou, T.Y., Shi, Z.: Extracting a shape function for a signal with intra-wave frequency modulation. Philos. Trans. R. Soc. Lond. A 374(2065), 20150194 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454(1971), 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Iatsenko, D., Bernjak, A., Stankovski, T., Shiogai, Y., Owen-Lynch, P.J., Clarkson, P.B.M., McClintock, P.V.E., Stefanovska, A.: Evolution of cardiorespiratory interactions with age Evolution of cardiorespiratory interactions with age. Philos. Trans. R. Soc. A 371(20110622), 1–18 (2013)

    MATH  Google Scholar 

  31. Indefrey, H., Hess, W., Seeser, G.: Design and evaluation of double-transform pitch determination algorithms with nonlinear distortion in the frequency domain-preliminary results. In: Signal Process, Proc. IEEE Int. Conf. Acoust. Speech, pp. 415–418 (1985)

  32. Khadkevich, M., Omologo, M.: Time-frequency reassigned features for automatic chord recognition. In: IEEE, Proc. ICASSP, pp. 181–184 (2011)

  33. Klapuri, A.: Multipitch analysis of polyphonic music and speech signals using an auditory model. IEEE Trans. Audio, Speech, Lang. Proc. 16(2), 255–266 (2008)

    Article  Google Scholar 

  34. Kobayashi, T., Imai, S.: Spectral analysis using generalized cepstrum. IEEE Trans. Acoust. Speech Signal Proc. 32(5), 1087–1089 (1984)

    Article  Google Scholar 

  35. Kowalski, M., Meynard, A., Wu, H.-T.: Convex optimization approach to signals with fast varying instantaneous frequency. Appl. Comput. Harmon. Anal. (2016). doi:10.1016/j.acha.2016.03.008

  36. Kraft, S., Zölzer, U.: Polyphonic pitch detection by iterative analysis of the autocorrelation function. In: Proc. Int. Conf. Digital Audio Effects, pp. 1–8 (2014)

  37. Lim, J.S.: Spectral root homomorphic deconvolution system. IEEE Trans. Acoust. Speech, Signal Proc. 27(3), 223–233 (1979)

    Article  MATH  Google Scholar 

  38. Lin, Y.-T., Hseu, S.-S., Yien, H.-W., Tsao, J.: Analyzing autonomic activity in electrocardiography about general anesthesia by spectrogram with multitaper time-frequency reassignment. IEEE-BMEI 2, 628–632 (2011)

    Google Scholar 

  39. Lin, Y.-T., Wu, H.-T.: ConceFT for time-varying heart rate variability analysis as a measure of noxious stimulation during general anesthesia. IEEE Trans. Biomed. Eng. 64(1), 145–154 (2016)

    Article  Google Scholar 

  40. Lin, Y.-T., Wu, H.-T., Tsao, J., Yien, H.-W., Hseu, S.-S.: Time-varying spectral analysis revealing differential effects of sevoflurane anaesthesia: non-rhythmic-to-rhythmic ratio. Acta Anaesthesiol. Scand. 58, 157–167 (2014)

    Article  Google Scholar 

  41. Montgomery, H.L.: Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis. AMS, Providence (1994)

    Book  MATH  Google Scholar 

  42. Oberlin, T., Meignen, S., Perrier, V.: Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations. IEEE Trans. Signal Process. 63(5), 1335–1344 (2015)

    Article  MathSciNet  Google Scholar 

  43. Oppenheim, A.V., Schafer, R.W.: From frequency to quefrency: a history of the cepstrum. IEEE Signal Process. Mag. 21(5), 95–106 (2004)

    Article  Google Scholar 

  44. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, 3rd edn. Prentice Hall, Englewood Cliffs (2009)

    MATH  Google Scholar 

  45. Passilongo, D., Mattioli, L., Bassi, E., Szabó, L., Apollonio, M.: Visualizing sound: counting wolves by using a spectral view of the chorus howling. Front. Zool. 12(1), 1–10 (2015)

    Article  Google Scholar 

  46. Peeters, G.: Music pitch representation by periodicity measures based on combined temporal and spectral representations. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Proc. (2006)

  47. Peeters, G., Rodet, X.: Sinola: a new analysis/synthesis method using spectrum peak shape distortion, phase and reassigned spectrum. In: Proc. ICMC, vol. 99, Citeseer (1999)

  48. Ricaud, B., Stempfel, G., Torrésani, B.: An optimally concentrated Gabor transform for localized time-frequency components. Adv. Comput. Math. 40, 683–702 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Stevens, S.S.: On the psychophysical law. Psychol. Rev. 64(3), 153 (1957)

    Article  Google Scholar 

  50. Su, L., Chuang, T.-Y., Yang, Y.-H.: Exploiting frequency, periodicity and harmonicity using advanced time-frequency concentration techniques for multipitch estimation of choir and symphony. In: ISMIR (2016)

  51. Su, L., Yang, Y.-H.: Combining spectral and temporal representations for multipitch estimation of polyphonic music. IEEE/ACM Trans. Audio Speech Lang. Process. 23(10), 1600–1612 (2015)

    Article  Google Scholar 

  52. Su, L., Yu, L.-F., Lai, H.-Y., Yang, Y.-H.: Resolving octave ambiguities: a cross-dataset investigation. In: Proc, Sound and Music Computing (SMC) (2014)

  53. Taxt, T.: Comparison of cepstrum-based methods for radial blind deconvolution of ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(3), 666–674 (1997)

    Article  Google Scholar 

  54. Ternström, S.: Perceptual evaluations of voice scatter in unison choir sounds. J. Voice 7(2), 129–135 (1993)

    Article  Google Scholar 

  55. Thakur, G.: The synchrosqueezing transform for instantaneous spectral analysis. Excursions in Harmonic Analysis, vol. 4, pp. 397–406. Springer, Berlin (2015)

    Chapter  Google Scholar 

  56. Tokuda, K., Kobayashi, T., Masuko, T., Imai, S.: Mel-generalized cepstral analysis: a unified approach to speech spectral estimation. In: Proc. Int. Conf. Spoken Language Processing (1994)

  57. Tolonen, T., Karjalainen, M.: A computationally efficient multipitch analysis model. IEEE Speech Audio Process. 8(6), 708–716 (2000)

    Article  Google Scholar 

  58. Wu, H.-T.: Instantaneous frequency and wave shape functions (I). Appl. Comput. Harmon. Anal. 35, 181–199 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wu, H.-T., Chang, H.-H., Wu, H.-K., Wang, C.-L., Yang, Y.-L., Wu, W.-H.: Application of wave-shape functions and synchrosqueezing transform to pulse signal analysis, submitted (2015)

  60. Wu, H.-T., Talmon, R., Lo, Y.-L.: Assess sleep stage by modern signal processing techniques. IEEE Trans. Biomed. Eng. 62, 1159–1168 (2015)

    Article  Google Scholar 

  61. Xi, S., Cao, H., Chen, X., Zhang, X., Jin, X.: A frequency-shift synchrosqueezing method for instantaneous speed estimation of rotating machinery. ASME J. Manuf. Sci. Eng. 137(3), 031012–031012-11 (2015)

    Article  Google Scholar 

  62. Yang, H.: Synchrosqueezed wave packet transforms and diffeomorphism based spectral analysis for 1D general mode decompositions. Appl. Comput. Harmon. Anal. 39, 33–66 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhao, X., Wang, D.: Analyzing noise robustness of mfcc and gfcc features in speaker identification. In: IEEE Int. Conf. Acoustics, Speech, Signal Proc. (ICASSP), IEEE, pp. 7204–7208 (2013)

Download references

Acknowledgements

Hau-tieng Wu’s research is partially supported by Sloan Research Fellow FR-2015-65363. Part of this work was done during Hau-tieng Wu’s visit to National Center for Theoretical Sciences, Taiwan, and he would like to thank NCTS for its hospitality. Hau-tieng Wu also thanks Dr. Ilya Vinogradov for the discussion of equidistribution sequences. The authors thank Professor Stephen W. Porges for sharing the non-contact PPG signal. The authors acknowledge the anonymous reviewers for their valuable recommendations to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hau-Tieng Wu.

Additional information

Communicated by Patrick Flandrin.

Appendices

Appendix

Proof of Theorem 3.4

In this section, we provide an analysis of STCT in Theorem 3.4 step by step

  • first step: approximate the ANH function by a “harmonized” function by Taylor’s expansion and evaluate its STFT;

  • second step: evaluate the \(\gamma \) power of the absolute value of STFT. Since in general there will be more than one ANH component in the ANH function, we have to handle the possible interference between different ANH components. We will apply the Erdös–Turán inequality to control the interference;

  • third step: find the Fourier transform of the \(\gamma \) power of the absolute value of STFT and finish the proof.

We start from the first Lemma, which allows us to locally approximate an ANH function by a sinusoidal function.

Lemma 7.1

Take \(\epsilon {>0}\), a sequence \(c \in \ell ^1\), \(N\in \mathbb {N}\) and \(0< C<\infty \). For \(f(t)=\frac{1}{2}B_0(t)+\sum _{\ell =1}^\infty \cos (2\pi \phi _\ell (t))\in \mathcal {D}^{c,C,N}_\epsilon \), for each \(\ell \in \{0\}\cup \mathbb {N}\) we have

$$\begin{aligned} |B_\ell (t+s)-B_\ell (t)|\le&\epsilon c(\ell ) |s|(\phi '_1(t)+\frac{1}{2}\Vert \phi ''_{1}\Vert _{L^\infty }|s|),\end{aligned}$$
(48)
$$\begin{aligned} |\phi '_\ell (t+s)-\phi '_\ell (t)|\le&\epsilon \ell |s|(\phi '_1(t)+\frac{1}{2}\Vert \phi ''_{1}\Vert _{L^\infty }|s|). \end{aligned}$$
(49)

Proof

Assume that \(s>0\). The proof for \(s\le 0\) is the same. By the assumption of \(B_\ell (t)\), we have

$$\begin{aligned} |B_\ell (t+s)-B_\ell (t)|&=\,\left| \int _0^sB_\ell '(t+u)d u\right| \\&{ \le \epsilon c(\ell ) \int _0^s\phi _1'(t+u) d u \quad \text{ by } \text{ the } \text{ slowly } \text{ varying } \text{ condition } \text{(16), }}\\&\le \,\epsilon c(\ell ) \int _0^s \left( \phi _1'(t)+\int _0^u \phi _1''({t+}y)dy\right) d u\\&\le \epsilon c(\ell ) \left( \phi _1'(t)s+\frac{1}{2}\Vert \phi ''_1\Vert _{L^\infty }s^2\right) . \end{aligned}$$

The proof of (49) follows by the same argument.

$$\begin{aligned} |\phi '_{\ell }(t+s) - \phi '_{\ell }(t)|&= \left| \int _0^s \phi ''_{\ell }(t+u) du \right| \\&\le \epsilon \ell \int _0^s \phi _1'(t+u)du \quad \text{ by } \text{ the } \text{ slowly } \text{ varying } \text{ condition } \text{(16), } \\&=\epsilon \ell \int _0^s \left( \phi _1'(t) + \int _0^u \phi _1''(t+y)dy\right) du\\&\le \epsilon \ell \left( \phi _1'(t) s + \frac{1}{2} \Vert \phi _1''\Vert _{L^{\infty }} s^2 \right) . \end{aligned}$$

\(\square \)

The following Lemma leads to the first part of the Theorem 3.4, regarding the STFT. In short, for the superposition of ANH functions in \(\mathcal {D}_{\epsilon ,d}\), at each time t the function behaves like a sinusoidal function and the STFT could be approximately explicitly.

Lemma 7.2

Fix \(\epsilon {>0}\) and \(d>0\). Take \(f(t)=\sum _{k=1}^Kf_k(t)\in \mathcal {D}_{\epsilon ,d}\). Then, the STFT of f at \(t\in \mathbb {R}\) is

$$\begin{aligned} V^{(h)}_f(t,\xi )= \frac{1}{2}\sum _{k=1}^K\sum _{\ell =-N_k}^{N_k} B_{k,\ell }(t)\hat{h}(\xi -\phi '_{k,\ell }(t))e^{i2\pi \phi _{k,\ell }(t)}+\epsilon _0(t,\xi ), \end{aligned}$$
(50)

where \(\xi \in \mathbb {R}\) and \(\epsilon _0(t,\xi )\) is defined in (62). Furthermore, \(|{\epsilon _0}(t,\xi )|\) is of order \(\epsilon \) and decays at the rate of \(|\xi |^{-1}\) as \(|\xi |\rightarrow \infty \).

Proof

Since \(f\in L^\infty \cap C^1\subset \mathcal {S}'\) and \(h\in \mathcal {S}\), by the linearity of the STFT, we have

$$\begin{aligned} V^{(h)}_f(t,\xi )=\sum _{k=1}^K\sum _{\ell =0}^\infty V^{(h)}_{f_{k,\ell }}(t,\xi ), \end{aligned}$$
(51)

where \(f_{k,0}=\frac{1}{2}B_{k,0}(\cdot {)}\) and \(f_{k,\ell }(\cdot ):=B_{k,\ell }(\cdot )\cos (2\pi \phi _{k,\ell }(\cdot ))\) for \(\ell =1,2,\ldots \). Denote

$$\begin{aligned}&\tilde{V}^{(h)}_{f_{k,\ell }}(t,\xi ) := \int B_{k,\ell }(t) \cos (2\pi (\phi _{k,\ell }(t) + \phi '_{k,\ell }(t)(x-t))) h(x-t) e^{-i2\pi \xi (x-t)}dx\nonumber \\&\tilde{V}_{f_{k,0}}^{(h)}(t,\xi )=\frac{1}{2}\int B_{k,0}(t)h(x-t)e^{-i2\pi \xi (x-t)}dx \end{aligned}$$
(52)

where \(k=1,\cdots , K\) and \(\ell = 1,\cdots , \infty \). Next, fix \(k\in \{1,\ldots ,K\}\), we evaluate the difference between \(V^{(h)}_{f_{k,\ell }}(t,\xi )\) and \(\tilde{V}^{(h)}_{f_{k,\ell }}(t,\xi )\). For each \(\ell \in \mathbb {N}\cup \{0\}\), denote

$$\begin{aligned} \epsilon _{k,\ell }(t,\xi ):=V^{(h)}_{f_{k,\ell }}(t,\xi )-{ \tilde{V}^{(h)}_{f_{k,\ell }}(t,\xi )}. \end{aligned}$$
(53)

We show that \(|\epsilon _{k,\ell }(t,\xi )|\) is of order \(\epsilon \) and linearly dependent on \(c_{k}(\ell )\) for all \(t,\xi \in \mathbb {R}\). First, note that

$$\begin{aligned} \left| \epsilon _{k,\ell }(t,\xi ) \right|&\le \int \left| B_{k,\ell }(x) - B_{k,\ell }(t)\right| \left| h(x-t) \right| dx \nonumber \\&\quad + B_{k,\ell }(t) \int \left| \cos (2\pi \phi _{k,\ell }(x)) - \cos ( 2\pi (\phi _{k,\ell }(t) + \phi '_{k,\ell }(t)(x-t) ))\right| \nonumber \\&\quad \times \left| h(x-t) \right| dx \end{aligned}$$
(54)

and that

$$\begin{aligned}&\left| \cos (2\pi \phi _{k,\ell }(x)) - \cos ( 2\pi (\phi _{k,\ell }(t) + \phi '_{k,\ell }(t)(x-t) )\right| \nonumber \\&\quad \le 2\pi \left| \phi _{k,\ell }(x)-\phi _{k,\ell }(t)-\phi _{k,\ell }'(t)(x-t) \right| \le 2\pi \int _0^{x-t} \left| \phi '_{k,\ell }(t+u)-\phi '_{k,\ell }(t)\right| du \end{aligned}$$
(55)

Denote

$$\begin{aligned} M_k:=\Vert \phi '_{k,1}\Vert _{L^\infty }. \end{aligned}$$

Clearly, \(\Vert \phi _{k,1}''\Vert _{L^\infty }\le \epsilon M_k\). Combining the above inequalities and Lemma 7.1, we have

$$\begin{aligned} |\epsilon _{k,\ell }(t,\xi )|\le&\, \int |B_{k,\ell }(x)-B_{k,\ell }(t)||h(x-t)|dx\\&+2\pi B_{k,\ell }(t)\int \int _0^{x-t}|\phi '_{k,\ell }(t+u)-\phi '_{k,\ell }(t)|du |h(x-t)|dx\\ \le&\, \epsilon \big [c_{k}(\ell )\big (\phi _{k,1}'(t)I_1+\frac{1}{2} \epsilon M_kI_2\big )+\pi B_{k,\ell }(t)\ell (\phi _{k,1}'(t)I_2+\frac{1}{3}\epsilon M_kI_3)\big ] \end{aligned}$$

which is of order \(\epsilon \) since \(\phi _{k,1}'(t)\) and \(B_{k,1}(t)\) are bounded. Note that \(\epsilon _{k,0}(t,\xi )\le \epsilon c_{k}(\ell )(\phi '_{k,1}(t) + \epsilon M_kI_2/2)\) since the phase \(\phi _{k,0}=0\). Furthermore, note that \(|\epsilon _{k,\ell }(t,\xi )|\) decays at the rate of \(|\xi |^{-1}\) as \(|\xi |\rightarrow \infty \) since

$$\begin{aligned} B_{k,\ell }(x) \cos (2\pi \phi _{k,\ell }(x)) - B_{k,\ell }(t) \cos (2\pi ( \phi _{k,\ell }(t)) + \phi '_{k,\ell }(t)(x-t) ) \in C^1. \end{aligned}$$
(56)

Denote

$$\begin{aligned} E^{(1)}_{k}(t,\xi ):=\sum _{\ell =0}^\infty \epsilon _{k,\ell }(t,\xi ), \end{aligned}$$

which converges by (15) that \(\sum _{\ell =1}^\infty \ell B_{k,\ell }(t)\le C_k \sqrt{\frac{1}{4}B^2_{k,0}(t)+\frac{1}{2}\sum _{\ell =1}^\infty B^2_{k,\ell }(t)}\), and hence

$$\begin{aligned} |E^{(1)}_{k}(t,\xi )|&\le \epsilon \Big (\Vert c_k\Vert _{\ell ^1}\big [\phi _{k,1}'(t)I_1+\frac{1}{2}\epsilon M_kI_2 {\big ]}\nonumber \\&\quad +\pi C_k {\sqrt{\frac{1}{4}B^2_{k,0}(t)+\frac{1}{2}\sum _{\ell =1}^\infty B^2_{k,\ell }(t)}} (\phi _{k,1}'(t)I_2+\frac{1}{3}\epsilon M_kI_3) \Big ). \end{aligned}$$
(57)

Thus, \(E^{(1)}_{k}(t,\xi )\) is of order \(\epsilon \).

Finally, for each \(k\in \{1,\ldots ,K\}\), denote

$$\begin{aligned} E^{(2)}_{k}(t,\xi ):= { \sum _{\ell =N_k +1}^{\infty } \tilde{V}^{(h)}_{f_{k,\ell }}(t,\xi ).} \end{aligned}$$

By the Plancherel identity, we have

$$\begin{aligned} \tilde{V}^{(h)}_{f_{k,\ell }}(t,\xi ) =\frac{1}{2}B_{k,\ell }(t)\Big [\hat{h}(\xi -\phi '_{k,\ell }(t))e^{i2\pi \phi _{k,\ell }(t)}+\hat{h}(\xi +\phi '_{k,\ell }(t))e^{-i2\pi \phi _{k,\ell }(t)}\Big ]. \end{aligned}$$
(58)

Thus, by the assumption that (14) that \(\sum _{\ell =N_k+1}^\infty B_{k,\ell }(t)\le \epsilon \sqrt{\frac{1}{4}B^2_{k,0}(t)+\frac{1}{2}\sum _{\ell =1}^\infty B^2_{k,\ell }(t)}\), we have

$$\begin{aligned} \Big |E^{(2)}_{k}(t,\xi )\Big |\le & {} \frac{1}{2}\sum _{\ell \in \mathbb {Z}\backslash {\{ -N_k, \cdots , N_k\} }} B_{k,\ell }(t)|\hat{h}(\xi -\phi '_{k,\ell }(t))|\nonumber \\\le & {} \epsilon I_0 {\sqrt{\frac{1}{4}B^2_{k,0}(t)+\frac{1}{2}\sum _{\ell =1}^\infty B^2_{k,\ell }(t)}}, \end{aligned}$$
(59)

where the last inequality holds since \(\Vert \hat{h}\Vert _{L^\infty }\le I_0\) by a direct bound. Thus, we have

$$\begin{aligned} {\sum _{k=1}^K \sum _{\ell =0}^{\infty } \tilde{V}^{(h)}_{f_{k,\ell }}}(t,\xi )=\frac{1}{2}\sum _{k=1}^K\sum _{\ell =-N_k}^{N_k} B_{k,\ell }(t)\hat{h}(\xi -\phi '_{k,\ell }(t))e^{i2\pi \phi _{k,\ell }(t)}+\sum _{k=1}^KE^{(2)}_{k}(t,\xi ),\nonumber \\ \end{aligned}$$
(60)

where \(|E^{(2)}_{k}(t,\xi )|\) is of order \(\epsilon \). Furthermore, \(|E^{(2)}_{k}(t,\xi )|\) decays faster than \(|\xi |^{-1}\) as \(|\xi |\rightarrow \infty \) since \(\sum _{\ell =1}^\infty B_{k,\ell }(t)<\infty \) and \(\sum _{k=1}^K \sum _{\ell =0}^{N_k} \tilde{V}^{(h)}_{f_{k,\ell }}(t,\xi )\) decays faster than \(|\xi |^{-1}\) as \(|\xi |\rightarrow \infty \).

We thus have

$$\begin{aligned} \sum _{k=1}^K\sum _{\ell =0}^\infty \tilde{V}^{(h)}_{f_{k,l}}(t,\xi )=\frac{1}{2}\sum _{k=1}^K\sum _{\ell \in \mathbb {Z}} B_{k,\ell }(t)\hat{h}(\xi -\phi '_{k,\ell }(t))e^{i2\pi \phi _{k,\ell }(t)}.\nonumber \\ \end{aligned}$$
(61)

Putting (53) and (60) together, we have

$$\begin{aligned} V^{(h)}_f(t,\xi )&\, =\sum _{k=1}^K\sum _{\ell =0}^\infty V^{(h)}_{f_{k,\ell }}(t,\xi ) =\sum _{k=1}^K\sum _{\ell =0}^\infty [{\tilde{V}^{(h)}_{f_{k,\ell }}}(t,\xi )+\epsilon _{k,\ell }(t,\xi )]\\&\,=\sum _{k=1}^K[\frac{1}{2}\sum _{\ell \in \mathbb {Z}} B_{k,\ell }(t)\hat{h}(\xi -\phi '_{k,\ell }(t))e^{i2\pi \phi _{k,\ell }(t)}+E^{(1)}_{k}(t,\xi )],\\&\,=\sum _{k=1}^K\big [\frac{1}{2}\sum _{\ell =-N_k}^{N_k} B_{k,\ell }(t)\hat{h}(\xi -\phi '_{k,\ell }(t))e^{i2\pi \phi _{k,\ell }(t)}+E^{(1)}_{k}(t,\xi )+E^{(2)}_{k}(t,\xi )\big ]. \end{aligned}$$

Denote

$$\begin{aligned} \epsilon _0(t,\xi ):=\sum _{k=1}^K[E^{(1)}_{k}(t,\xi )+E^{(2)}_{k}(t,\xi )], \end{aligned}$$
(62)

which is of order \(\epsilon \) and \(|\epsilon _0(t,\xi )|\) decays at the rate of \(|\xi |^{-1}\) as \(|\xi |\rightarrow \infty \). We thus have the proof. \(\square \)

Lemma 7.3

Fix \(\epsilon {>0}\) and \(d>0\). Take \(f(t)=\sum _{k=1}^Kf_k(t)\in \mathcal {D}_{\epsilon ,d}\). Fix a window function \(h\in \mathcal {S}\). For each \(t\in \mathbb {R}\) and \(\xi \in \mathbb {R}\), we have

$$\begin{aligned}&\sum _{k=1}^K\sum _{\ell =-N_k}^{N_k} B_{k,\ell }(t)\hat{h}(\xi -\phi '_{k,\ell }(t))e^{i2\pi \phi _{k,\ell }(t)}\\ =\,&\sum _{k=1}^K\sum _{\ell =-N_k}^{N_k} B_{k,\ell }(t)\hat{h}(\xi -\ell \phi '_{k,1}(t))e^{i2\pi \phi _{k,\ell }(t)}+\epsilon _1(t,\xi ),\nonumber \end{aligned}$$
(63)

where \(\epsilon _1(t,\xi )\) is defined in (67) satisfying

$$\begin{aligned} |\epsilon _1(t,\xi )|\le \epsilon 2\pi I_1 \sum _{k=1}^K \phi _{k,1}'(t)\sum _{\ell =-N_k}^{N_k} B_{k,\ell }(t)\chi _{\tilde{Z}_{k,\ell }}(\xi ), \end{aligned}$$
(64)

where \(\tilde{Z}_{k,\ell }(t) := [(\ell - \epsilon ) \phi '_{k,1}(t) - \Delta , (\ell + \epsilon ) \phi '_{k,1} + \Delta ]\). Note that the support of \(\epsilon _1(t,\xi )\) is inside \([-\max _{k}((N_k+\epsilon )\phi _{k,1}'(t))-\Delta ,\,\max _{k}((N_k+\epsilon )\phi _{k,1}'(t))+\Delta ]\). In particular, we have

$$\begin{aligned} V^{(h)}_f(t,\xi )= \frac{1}{2}\sum _{k=1}^K\sum _{\ell =-N_k}^{N_k} B_{k,\ell }(t)\hat{h}(\xi -\ell \phi '_{k,1}(t))e^{i2\pi \phi _{k,\ell }(t)}+\epsilon _2(t,\xi ), \end{aligned}$$
(65)

where \(\epsilon _2(t,\xi )=\epsilon _0(t,\xi )+\epsilon _1(t,\xi )\), which is of order \(\epsilon \) and \(|\epsilon _2(t,\xi )|\) decays at the rate of \(|\xi |^{-1}\) as \(|\xi |\rightarrow \infty \).

Proof

The proof is straightforward by the smoothness assumption of h and Taylor’s expansion. Indeed, by the assumption that \(\left| \frac{\phi '_{k,\ell }(t)}{\phi '_{k,1}(t)}-\ell \right| \le \epsilon \), we know that \(|\phi '_{k,\ell }(t)-\ell \phi '_{k,1}(t)|\le \epsilon \phi _{k,1}'(t)\) for all \(\ell =1,\ldots \). Thus, since \(\hat{h}\) is compactly supported on \([-\Delta ,\Delta ]\), we have that for \(\xi \in \tilde{Z}_{k,\ell }\),

$$\begin{aligned} |\hat{h}(\xi -\phi '_{k,\ell }(t))-\hat{h}(\xi -\ell \phi '_{k,1}(t))|\le \epsilon \phi _{k,1}'(t)\Vert \hat{h}'\Vert _{L^\infty }\le 2\pi \epsilon \phi _{k,1}'(t)I_1, \end{aligned}$$
(66)

where we use the bound \(\Vert \hat{h}'\Vert _{L^\infty }\le 2\pi I_1\); for \(\xi \notin \tilde{Z}_{k,\ell }\),

$$\begin{aligned} |\hat{h}(\xi -\phi '_{k,\ell }(t))-\hat{h}(\xi -\ell \phi '_{k,1}(t))|=0. \end{aligned}$$

Denote

$$\begin{aligned} \epsilon _1(t,\xi ):=\sum _{k=1}^K\sum _{\ell =-N_k}^{N_k} B_{k,\ell }(t)(\hat{h}(\xi -\phi '_{k,\ell }(t))-\hat{h}(\xi -\ell \phi '_{k,1}(t)))e^{i2\pi \phi _{k,\ell }(t)}. \end{aligned}$$
(67)

By a direct bound, we have

$$\begin{aligned} |\epsilon _1(t,\xi )|=&\left| \sum _{k=1}^K\sum _{\ell =-N_k}^{N_k} B_{k,\ell }(t)(\hat{h}(\xi -\phi '_{k,\ell }(t))-\hat{h}(\xi -\ell \phi '_{k,1}(t)))e^{i2\pi \phi _{k,\ell }(t)}\right| \\ \le&\, \sum _{k=1}^K\sum _{\ell =-N_k}^{N_k} B_{k,\ell }(t)\left| \hat{h}(\xi -\phi '_{k,\ell }(t))-\hat{h}(\xi -\ell \phi '_{k,1}(t))\right| \nonumber \\ \le \,&\epsilon 2\pi I_1 \sum _{k=1}^K \phi _{k,1}'(t)\sum _{\ell =-N_k}^{N_k} B_{k,\ell }(t)\chi _{\tilde{Z}_{k,\ell }},\nonumber \end{aligned}$$
(68)

which leads to the claim. The proof of (65) comes from a direct combination of (50) and (63). \(\square \)

By the assumption that \(0<\Delta \le \phi _{1,1}'(t)/4\), we know that for a fixed \(k\in \{1,\ldots ,K\}\), \(Z_{k,i}(t)\cap Z_{k,j}(t)=\emptyset \) for all \(i\ne j\), where \(Z_{k,\ell }\) is defined in (34). Thus, when \(K=1\), we know that for any \(\gamma >0\), the \(\gamma \) power of the absolute value of the major term in (65) becomes

$$\begin{aligned} \left| \sum _{\ell =-N_1}^{N_1} B_{1,\ell }(t)\hat{h}(\xi -\phi '_{1,\ell }(t))e^{i2\pi \phi _{1,\ell }(t)}\right| ^\gamma =\sum _{\ell =-N_1}^{N_1} B^\gamma _{1,\ell }(t)|\hat{h}(\xi -\phi '_{1,\ell }(t))|^\gamma \end{aligned}$$

since the supports of \(\hat{h}(\xi -\phi '_{1,i}(t))\) and \(\hat{h}(\xi -\phi '_{1,j}(t))\) do not overlap, when \(i\ne j\). However, when \(K>1\), although \(Z_{k,1}(t)\cap Z_{\ell ,1}(t)=\emptyset \) when \(k\ne \ell \) since \(\Delta <d/4\), there is no guarantee that \(Z_{k,i}(t)\cap Z_{\ell ,j}(t)=\emptyset \) when \(k\ne \ell \) and \(i\ne j\). So, when \(K>1\), we need to be careful when we take the power.

Definition 7.4

Fix \(\epsilon { >0}\) and \(d>0\). Take \(f(t)=\sum _{k=1}^Kf_k(t)\in \mathcal {D}_{\epsilon ,d}\). Define \({S_1(t)}=\emptyset \), and for each \(k\in \{{2},\ldots ,K\}\), define

$$\begin{aligned} S_{k}(t):= & {} \{i,-i|\, 1\le i\le N_k,\,Z_{k,i}(t)\nonumber \\ {}&\cap&Z_{\ell ,j}(t)\ne \emptyset ,\,j\in { \{1,\ldots ,N_\ell \}}\backslash S_\ell (t),\,\ell =1,\ldots ,k-1 \} { \cup \{0\}}. \end{aligned}$$
(69)

Furthermore, define

$$\begin{aligned} Y_{\text {no-OL}}(t)&:=\cup _{k=1}^K\cup _{i\in { \{0, \pm 1,\ldots ,\pm N_k\}} \backslash S_k}{Z}_{k,i}(t)\subset \mathbb {R}\\ Y_{\text {with-OL}}(t)&:=\cup _{k=1}^K\cup _{i\in S_k} {Z}_{k,i}(t)\subset \mathbb {R}.\nonumber \end{aligned}$$
(70)

The set \(S_k(t)\) indicates the multiples of the kth ANH function that have the danger of overlapping with the other ANH functions. To be more precise, for \(k\in \{2,\ldots ,K\}\) and \(\ell \in \{1,\ldots ,k-1\}\), the supports of \(\hat{h}(\xi -i\phi _{k}'(t))\) and \(\hat{h}(\xi -j \phi _{\ell }'(t))\), where \(i\in {\{0,\pm 1,\ldots ,\pm N_k\}}\backslash S_k\) and \(j\in { \{0,\pm 1,\ldots ,\pm N_\ell \}} \backslash S_\ell \) do not overlap. The sets \(Y_{\text {no-OL}}(t)\) and \(Y_{\text {with-OL}}(t)\) are used to control the overlapping of multiples associated with different ANH components. Note that the supports of all summands in \(\sum _{k=1}^K\sum _{\ell \in \{{0,}\pm 1,\ldots ,\pm N_k\}\backslash S_k}B_{k,\ell }(t)|\hat{h}(\xi -\ell \phi '_{k,1}(t))|\) do not overlap.

To evaluate \(|V^{(h)}_f(t,\xi )|^\gamma \), we need the following bounds to control the influence of taking the \(\gamma \) power.

Lemma 7.5

Suppose \(x\ge y\ge 0\). For \(0<\gamma \le 1\), we have

$$\begin{aligned} (x+y)^\gamma \le x^\gamma +\gamma y^\gamma . \end{aligned}$$
(71)

Proof

When \(x=y=0\), this is the trivial case. Suppose \(x\ge y> 0\) or \(x>y\ge 0\). By Taylor’s expansion, we have

$$\begin{aligned} (x+y)^\gamma =x^\gamma (1+\frac{y}{x})^\gamma \le x^\gamma +\gamma \frac{y}{x}x^\gamma =x^\gamma +\gamma \big (\frac{y}{x}\big )^{1-\gamma }y^\gamma . \end{aligned}$$
(72)

Since \(y/x\le 1\), we obtain the bound. \(\square \)

Lemma 7.6

Suppose Assumption 3.2 holds and take \(0<\gamma \le 1\). Then we have

$$\begin{aligned} |V^{(h)}_f(t,\xi )|^\gamma&\,=\frac{1}{2^\gamma }\sum _{k=1}^K\sum _{\ell =-N_k}^{N_k}B^\gamma _{k,\ell }(t)|\hat{h}(\xi -\ell \phi '_{k,1}(t))|^\gamma +\delta _3(t,\xi )+{\epsilon _3}(t,\xi ), \end{aligned}$$
(73)

where \(\delta _3(t,\xi )\) is defined in (74) and \(\epsilon _3(t,\xi )\) is defined in (75). Moreover, \(\delta _3(t,\xi )=0\) when \(K=1\). When \(K>1\), \(\delta _3(t,\xi )\) is supported on \(Y_{\text {with-OL}}(t)\) and is bounded by \(\frac{I_0^\gamma }{2^\gamma }\sum _{k=2}^K\sum _{\ell \in S_k}B^\gamma _{k,\ell }(t)\chi _{Z_{k,\ell }}(\xi )\). \(\epsilon _3(t,\xi )\) satisfies \(|{\epsilon _3}(t,\xi )|\le |\epsilon _{2}(t,\xi )|^\gamma \).

Proof

Let \(\delta _3(t,\xi )\) and \({\epsilon _3}(t,\xi )\) be defined as

$$\begin{aligned} \delta _3(t,\xi ):= & {} \Big |\frac{1}{2} \sum _{k=1}^K \sum _{\ell = -N_k}^{N_k} B_{k,\ell }(t) \hat{h}(\xi - \ell \phi '_{k,1}(t))e^{i2\pi \phi _{k,\ell }(t)}\Big |^{\gamma } \nonumber \\&- \frac{1}{2^{\gamma }} \sum _{k=1}^K \sum _{\ell = -N_k}^{N_k} B_{k,\ell }^{\gamma }(t) |\hat{h}(\xi - \ell \phi '_{k,1}(t))|^{\gamma } \end{aligned}$$
(74)

and

$$\begin{aligned} {\epsilon _3}(t,\xi ) := |V^{(h)}_f(t,\xi )|^\gamma -\Big |\frac{1}{2} \sum _{k=1}^K \sum _{\ell = -N_k}^{N_k} B_{k,\ell }(t) \hat{h}(\xi - \ell \phi '_{k,1}(t))e^{i2\pi \phi _{k,\ell }(t)}\Big |^{\gamma }. \end{aligned}$$
(75)

That is,

$$\begin{aligned} |V^{(h)}_f(t,\xi )|^\gamma = \frac{1}{2^{\gamma }} \sum _{k=1}^K \sum _{\ell = -N_k}^{N_k} B_{k,\ell }^{\gamma }(t) |\hat{h}(\xi - \ell \phi '_{k,1}(t))|^{\gamma } + \delta _3(t,\xi ) + {\epsilon _3}(t,\xi ).\nonumber \\ \end{aligned}$$
(76)

According to Lemmas 7.5 and 7.3, when \(\epsilon \) is small enough, by the triangular inequality that \(\big ||V^{(h)}_f(t,\xi )|- |\frac{1}{2} \sum _{k=1}^K \sum _{\ell = -N_k}^{N_k} B_{k,\ell }(t) \hat{h}(\xi - \ell \phi '_{k,1}(t))e^{i2\pi \phi _{k,\ell }(t)}|\big |\le |\epsilon _2(t,\xi )|\), we have

$$\begin{aligned} |{\epsilon _3}(t,\xi )| \le |\epsilon _2(t,\xi )|^{\gamma }. \end{aligned}$$
(77)

Note that when \(\xi \in Y_{\text {no-OL}}(t)\), \(\delta _3(t,\xi ) =0\) since the supports of all summands in \(\sum _{k=1}^K\sum _{\ell =-N_k}^{N_k}B_{k,\ell }(t)|\hat{h}(\xi -\ell \phi '_{k,1}(t))|\) do not overlap for each \(\xi \in Y_{\text {no-OL}}(t)\). Therefore, we have

$$\begin{aligned} \delta _3(t,\xi ) = \frac{1}{2^\gamma } \left( \Big |\sum _{k=2}^K\sum _{\ell \in S_k} B_{k,\ell }(t) \hat{h}(\xi - \ell \phi '_{k,1}(t))e^{i2\pi \phi _{k,\ell }(t)}\Big |^{\gamma }\right. \nonumber \\ - \left. \sum _{k=2}^K\sum _{\ell \in S_k}B_{k,\ell }^{\gamma }(t) |\hat{h}(\xi - \ell \phi '_{k,1}(t))|^{\gamma }\right) . \end{aligned}$$
(78)

Hence,

$$\begin{aligned} |\delta _3(t,\xi ) |&= \left| \Big |\frac{1}{2} \sum _{k=1}^K \sum _{\ell \in S_k(t)} B_{k,\ell }(t) \hat{h}(\xi - \ell \phi '_{k,1}(t))e^{i2\pi \phi _{k,\ell }(t)}\Big |^{\gamma }\right. \\&\left. \quad - \frac{1}{2^{\gamma }} \sum _{k=1}^K \sum _{\ell \in S_k(t)} B_{k,\ell }^{\gamma }(t) |\hat{h}(\xi - \ell \phi '_{k,1}(t))|^{\gamma } \right| \\&= \frac{1}{2^{\gamma }} \sum _{k=1}^K \sum _{\ell \in S_k(t)} B_{k,\ell }^{\gamma }(t) |\hat{h}(\xi - \ell \phi '_{k,1}(t))|^{\gamma }\\ {}&\quad - \left| \frac{1}{2} \sum _{k=1}^K \sum _{\ell \in S_k(t)} B_{k,\ell }(t) \hat{h}(\xi - \ell \phi '_{k,1}(t))e^{i2\pi \phi _{k,\ell }(t)}\right| ^{\gamma }, \end{aligned}$$

since \(\big |\frac{1}{2} \sum _{k=1}^K \sum _{\ell \in S_k(t) } B_{k,\ell }(t) \hat{h}(\xi - \ell \phi '_{k,1}(t))e^{i2\pi \phi _{k,\ell }(t)}\big |^{\gamma } \le \frac{1}{2^{\gamma }} \sum _{k=1}^K \sum _{\ell \in S_k(t) } B_{k,\ell }^{\gamma }(t) |\hat{h}(\xi - \ell \phi '_{k,1}(t))|^{\gamma }\) by Lemma 7.5. Note that when \(K=1\), \(S_1(t) = \emptyset \). Putting these together, we have

$$\begin{aligned} |\delta _3(t,\xi )| \le \frac{1}{2^\gamma }\sum _{k=2}^K\sum _{\ell \in S_k}B^\gamma _{k,\ell }(t)\Vert \hat{h}\Vert ^\gamma _{L^\infty }\chi _{Z_{k,\ell }}(\xi )\le \frac{I^\gamma _0}{2^\gamma } \sum _{k=2}^K\sum _{\ell \in S_k}B^\gamma _{k,\ell }(t)\chi _{Z_{k,\ell }}(\xi )\nonumber \\ \end{aligned}$$
(79)

which completes the proof. \(\square \)

Before finishing the proof, we need to control the error introduced by \(\delta _3(t,\xi )\) in Lemma 7.6 when \(K\ge 2\). Note that \(\delta _3(t,\xi )\) is supported on \(Y_{\text {with-OL}}(t)\). We now control this set.

Lemma 7.7

Suppose Assumption 3.2 holds and \(K>1\). For each \(t\in \mathbb {R}\), we have for each \(k\in \{2,\ldots ,K\}\) the following bound:

$$\begin{aligned} \frac{\#S_{k}(t)}{N_k}\le { \sum _{\ell =1}^{k-1}}\Big [\frac{4\Delta }{\phi '_{\ell ,1}(t)} +E^{(\ell )}(N_k)\Big ], \end{aligned}$$
(80)

where \(\#S_{k}(t)\) is the cardinal number of the set \(S_{k}(t)\) and \(E^{(\ell )}(N_k)\ge 0\) is defined in (85). Clearly \(\frac{\#S_{1}(t)}{N_1}=0\).

This Lemma gives a bound of the set \(S_k(t)\), which indicates that only a small fraction of the multiples of the kth ANH function has the danger of overlapping with other ANH function.

Proof

Fix \(k\in \{2,3,\ldots ,K\}\) and \(\ell \in \{1,\ldots ,k-1\}\). Define a set

$$\begin{aligned} S_{k,\ell }(t):=\{m|\, { m\in \mathbb {N}\cup \{0\}},\,Z_{k,m}(t)\cap Z_{\ell ,j}\ne \emptyset ,\,j\in { \mathbb {N}\cup \{0\}}\}, \end{aligned}$$
(81)

which is the set of multiples of \(\phi '_{k,1}(t)\) that overlap some multiples of \(\phi '_{\ell ,1}(t)\). Clearly, \( S_{k}(t) \subset \cup _{\ell =1}^{k-1}S_{k,\ell }(t)\) and \(S_{k,\ell _1}(t)\) and \(S_{k,\ell _2}(t)\) might overlap when \(\ell _1\ne \ell _2\). Thus, \(\#S_{k}(t)\le { \sum _{\ell =1}^{k-1}}\#S_{k,\ell }(t)\). To evaluate the cardinality of the set \(S_{k,\ell }(t)\), denote a sequence \(s_{k,\ell }(m)\), \(m\in \mathbb {N}\), so that

$$\begin{aligned} s_{k,\ell }(m)=m\phi '_{k,1}(t)\,\, (\text {mod }\phi '_{\ell ,1}(t)). \end{aligned}$$
(82)

By the compactly supported assumption of \(\hat{h}\), when \(s_{k,\ell }(m)\) lands in

$$\begin{aligned} \mathcal {Z}_{k,\ell }:=[0,2\Delta ]\cup [\phi '_{\ell ,1}(t)-2\Delta ,\phi '_{\ell ,1}(t)), \end{aligned}$$

we know that \(Z_{k,m}(t)\cap Z_{\ell ,j}\ne \emptyset \) for some j; that is,

$$\begin{aligned} S_{k,\ell }(t)=\{ {0} \le m \le N_k \, | \,s_{k,\ell }(m)\in \mathcal {Z}_{k,\ell } \}. \end{aligned}$$

When \(\phi '_{k,1}(t)/\phi '_{\ell ,1}(t)\) is a rational number, that is, \(\phi '_{k,1}(t)/\phi '_{\ell ,1}(t)=a/b\), where \(a,b\in \mathbb {N}\) and are co-prime numbers, then the sequence \(\{s_{k,\ell }(m)\}_{m\in \mathbb {N}}\) only lands on \(\{0,\phi '_{\ell ,1}(t)/b,\ldots ,(b-1)\phi '_{\ell ,1}(t)/b\}\) uniformly on \([0,\phi '_{\ell ,1}(t))\) since the integer a has a multiplicative inverse modulo b; that is, there exists \(n_0\) such that \(an_0\,\, (\text {mod } b)=1\). Thus the claim holds with the worst bound

$$\begin{aligned} \frac{\#S_{k}(t)}{N_k}\le \sum _{\ell =1}^{k-1}\frac{4\Delta }{\phi '_{\ell ,1}(t)}. \end{aligned}$$
(83)

When \(\phi '_{k,1}(t)/\phi '_{\ell ,1}(t)\) is an irrational number, the sequence \(\{s_{k,\ell }(m)\}\) is equidistributed on \([0,\phi '_{\ell ,1}(t)]\) by Weyl’s criterion. We apply the following well-known Erdös–Turán inequality [41, Corollary 1.1] to bound \(\frac{\#S_{k,\ell }(t)}{N_k}\):

$$\begin{aligned}&\Big | \frac{\#S_{k,\ell }(t)}{N_k} - \frac{4\Delta }{\phi '_{\ell ,1}(t)} \Big | \le \frac{1}{J+1} + \frac{3}{N_k}\sum _{n=1}^{J} \frac{1}{n} \left| \sum _{m={0}}^{N_k} e^{i2 \pi n s_{k,\ell }(m) } \right| \end{aligned}$$
(84)

for all positive J. Denote \(E^{(\ell )}_J(N_k)\) to be the right hand side of (84). Then the best upper bound we could obtain from Erdös–Turán inequality is

$$\begin{aligned} E^{(\ell )}(N_k):=\min _{J\in \mathbb {N}}E^{(\ell )}_J(N_k), \end{aligned}$$
(85)

which goes to zero when \(N_k\rightarrow \infty \); that is, when \(N_k\rightarrow \infty \), the chance that \(s_{k,\ell }(m)\) would land in \(\mathcal {Z}_{k,\ell }\) is \(\frac{4\Delta }{\phi '_{\ell ,1}(t)}\). Thus, in general we know that for the pair \((k,\ell )\), we have

$$\begin{aligned} \frac{\#S_{k,\ell }(t)}{N_k}\le \frac{4\Delta }{\phi '_{\ell ,1}(t)}+E^{(\ell )}(N_k) \end{aligned}$$

and hence

$$\begin{aligned} \#S_{k,\ell }(t)\le N_k\Big [\frac{4\Delta }{\phi '_{\ell ,1}(t)}+E^{(\ell )}(N_k)\Big ], \end{aligned}$$
(86)

which is the number of multiples of \(\phi '_{k,1}(t)\) that are close to some multiples of \(\phi '_{\ell ,1}(t)\). In conclusion, we have

$$\begin{aligned} \frac{\#S_{k}(t)}{N_k}\le \sum _{\ell =1}^{k-1}\Big [\frac{4\Delta }{\phi '_{\ell ,1}(t)} +E^{(\ell )}(N_k)\Big ]. \end{aligned}$$
(87)

\(\square \)

By putting the above Lemmas together, we can prove Theorem 3.4, which shows that the STCT does provide the necessary information for the fundamental IF of the ANH function, even when there are more than one component.

Proof of Theorem 3.4

Note that in general \(|V^{(h)}_f(t,\cdot )|^\gamma \) is a tempered distribution, so we can define the Fourier transform in the distribution sense. Define a \(\ell ^1\) sequence \(b_k\), where \(b_k(\ell )=B^\gamma _{k,\ell }(t)\) for all \(\ell \in \{0,\ldots ,N_k\}\), \(b_k(\ell )=0\) for all \(\ell >N_k\), and \(b_k(-\ell )=b_k(\ell )\) for all \(\ell \in \mathbb {N}\cup \{0\}\). By a direct calculation, for \(q>0\), we have

$$\begin{aligned}&\mathcal {F}(\sum _{\ell =-N_k}^{N_k}B^\gamma _{k,\ell }(t)\delta _{\ell \phi _{k,1}'(t)}\star |\hat{h}|^\gamma )(q)=\widehat{|\hat{h}|^\gamma }(q)\sum _{\ell =-N_k}^{N_k}b_k(\ell )e^{i2\pi \ell \phi _{k,1}'(t)q}\nonumber \\ {}&\quad =\widehat{|\hat{h}|^\gamma }(q)\sum _{\ell =-\infty }^{\infty }b_k(\ell )e^{i2\pi \ell \phi _{k,1}'(t)q}=\widehat{|\hat{h}|^\gamma }(q){\hat{b}_k(q)}, \end{aligned}$$
(88)

where \(\hat{b}_k\) is the discrete-time Fourier transform of the \(\ell ^1\) sequence \(b_k\), which is a continuous and real.

For the term \(\delta _3\), since \(\delta _3(t,\cdot )\) is compactly supported, continuous by (78) and is bounded by (79), \(\delta _3(t,\cdot )\in L^1\) and its Fourier transform could be well defined as a function. Since the support of \(\delta _3\), which is determined by the overlapped multiples of different ANH functions, could not be controlled, we apply the Riemann-Lebesgue theorem to evaluate a simple bound:

$$\begin{aligned}&|\int \delta _3(t,\xi )e^{-i2\pi \xi q}d \xi |\le { \frac{I_0^{\gamma }}{2^{\gamma }}}\sum _{k=2}^K \sum _{\ell \in S_k(t)}B^\gamma _{k,\ell }(t)\int \chi _{{Z}_{k,\ell }}(\xi ) d\xi \nonumber \\ \le \,&{ 2\Delta I_0^{\gamma } \sum _{k=2}^K \sum _{\ell \in S_k(t)}B^\gamma _{k,\ell }(t) \le 2 \Delta I_0^{\gamma }\sum _{k=2}^K B^\gamma _{k,1}(t)\sum _{\ell \in S_k(t)}c^\gamma _k(\ell ) } \end{aligned}$$
(89)

since \(|Z_{k,\ell }| =2\Delta \). To control \(\sum _{\ell \in S_k(t)}c_k^\gamma (\ell )\), we apply the simple bound \(c_k(\ell )\le \Vert c_k\Vert _{\ell ^\infty }\) for all \(\ell =0,1,\ldots ,N_k\). This leads to

$$\begin{aligned} \sum _{\ell \in S_k(t)}c^\gamma _k(\ell )&\le \#S_{k}(t)\Vert c_k^\gamma \Vert _{\ell ^\infty }\le \Vert c_k^\gamma \Vert _{\ell ^\infty }N_k\sum _{\ell =1}^{k-1}\Big [\frac{4\Delta }{\phi '_{\ell ,1}(t)}+E^{(\ell )}(N_k)\Big ], \end{aligned}$$

where the last inequality holds by Lemma 7.7. Thus, the first term

$$\begin{aligned} E_1:=\mathcal {F}[\delta _3(t,\cdot )] \end{aligned}$$
(90)

is bounded by

$$\begin{aligned} |E_1|\le 2\Delta I_0^\gamma \sum _{k=2}^K B^\gamma _{k,1}(t)\Vert c_k^\gamma \Vert _{\ell ^\infty }N_k\sum _{\ell =1}^{k-1}\Big [\frac{4\Delta }{\phi '_{\ell ,1}(t)}+E^{(\ell )}(N_k)\Big ]. \end{aligned}$$

Note that \(K=1\), since \(\delta _3(t,\xi )=0\), we know that \(E_1=0\) and the bound holds trivially.

The error term \({\epsilon _3}(t,\xi )\) is of order \(\epsilon ^\gamma \) but in general it decays at the rate of \(|\xi |^{-\gamma }\) as \(|\xi |\rightarrow \infty \), so its Fourier transform is evaluated in the distribution sense. Denote \(E_2:=\mathcal {F}[{\epsilon _3}(t,\cdot )]\). We have

$$\begin{aligned} |E_2(\psi )|=\big |\int {\epsilon _3}(t,\xi ) \hat{\psi }(\xi )d\xi \big |\le \Vert {\epsilon _3}(t,\cdot )\Vert _{L^\infty } \Vert \hat{\psi }\Vert _{L^1} \end{aligned}$$
(91)

for all \(\psi \in \mathcal {S}\). We have thus obtained the claim. \(\square \)

Remark 1

Note that the bound for \(E_1\), which is the Fourier transform of \(\delta _3\), is the worst bound, since we could not control the locations of the overlaps between those multiples of different ANH components in the STFT. The problem we encounter could be simplified to the following analytic number theory problem: given an irrational number \(\alpha \). Denote \(\beta _n=n\alpha -[n\alpha ]\), where \(n\in \mathbb {N}\cup \{0\}\) and [x] means the integer part of x. Denote the set \(I=\{n,-n| n\in \mathbb {N}\cup \{0\},\,0\le \beta _n<\zeta \}\cup \{n,-n|\beta _n>1-\zeta \}\), where \(\zeta >0\) is a small number. Then, what is the spectral distribution of \(\sum _{n\in I}\delta _n\star g\), where g is a smooth and compact function supported on \([-\zeta /2,\zeta /2]\)?

Proof of Corollary 3.5

By (37), \(b_k(\ell )\) is non-zero for \(\ell \in \{-N_k,\ldots ,0,\ldots ,N_k\}\). Thus \(\hat{b}_k\) is a continuous, real, and periodic function with the period equal to \(1/\phi _{k,1}'(t)\). By (57), (59), and (64), \(\epsilon _2(t,\xi )\) is bounded by \(Q\epsilon \), where

$$\begin{aligned} Q&:=\sum _{k=1}^K\Big [ \big (\Vert c_k\Vert _{\ell ^1}[\phi _{k,1}'(t)I_1+\frac{1}{2}\epsilon M_kI_2]\\&\quad +\pi C_k {\sqrt{\frac{1}{4}B^2_{k,0}(t)+\frac{1}{2}\sum _{\ell =1}^\infty B^2_{k,\ell }(t)}} (\phi _{k,1}'(t)I_2+\frac{1}{3}\epsilon M_kI_3) \big ) \\&\quad + I_0\sqrt{\frac{1}{4}B^2_{k,0}(t)+\frac{1}{2}\sum _{\ell =1}^\infty B^2_{k,\ell }(t)} + 2\pi I_1 \phi _{k,1}'(t)\sum _{\ell =-N_k}^{N_k} B_{k,\ell }(t)\chi _{\tilde{Z}_{k,\ell }}\Big ]. \end{aligned}$$

Thus, when \(\sqrt{\frac{1}{4}B^2_{k,0}(t)+\frac{1}{2}\sum _{\ell =1}^\infty B^2_{k,\ell }(t)}\) is sufficiently large and \(\epsilon \) is sufficiently small, \(\frac{1}{2^{\gamma }} \sum _{k=1}^K \sum _{\ell = -N_k}^{N_k} B_{k,\ell }^{\gamma }(t) |\hat{h}(\xi - \ell \phi '_{k,1}(t))|^{\gamma }\) dominantes \(|\epsilon _2(t,\xi )|^\gamma \), since \(B^\gamma _{k,\ell }(t)>\epsilon ^{\gamma /2}\big (\frac{1}{4}B^2_{k,0}(t)+\frac{1}{2}\sum _{\ell =1}^\infty B^2_{k,\ell }(t)\big )^{\gamma /2}\) and \(\epsilon _3(t,\xi )\) is bounded by \(Q^\gamma \epsilon ^\gamma \). Moreover, when \(\Delta N_k\) is sufficiently small, \(\frac{1}{2^{\gamma }} \sum _{k=1}^K \sum _{\ell = -N_k}^{N_k} B_{k,\ell }^{\gamma }(t) |\hat{h}(\xi - \ell \phi '_{k,1}(t))|^{\gamma }\) also dominates \(\delta _3(t,\xi )\), and hence we finish the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CY., Su, L. & Wu, HT. Wave-Shape Function Analysis. J Fourier Anal Appl 24, 451–505 (2018). https://doi.org/10.1007/s00041-017-9523-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-017-9523-0

Keywords

Mathematics Subject Classification

Navigation