Skip to main content
Log in

Eusociality is not a major evolutionary transition, and why that matters

  • Commentary
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Major evolutionary transitions (METs) across Earth’s biological history describe fusions of lower-level entities into higher-level individuals (evolutionary transitions in individuality: ETIs) as well as novel forms of information storage and transmission (Information Leaps). Obligate eusociality is frequently listed as a MET—most often in the context of being an ETI and with an extrapolation that the ETI requires inclusive fitness maximization for all parties. However, obligate eusociality neither fundamentally alters how information is stored and transmitted nor meets the various criteria proposed for an ETI. We argue that rather than representing a higher-level individual, the evolution of non-reproductive worker castes is more analogous to a novel ‘organ’ that maintains homeostasis and nurtures the gonadal tissue of mated queens. Worker castes benefit queens by performing dangerous but necessary functions such as foraging, while enabling the gamete-producing functions to be kept relatively safe. This is an ecologically successful and significant evolutionary innovation, which can be thought of as a major competitive transition (MCT). In this context, we hypothesize that worker castes are most likely to evolve through parental manipulation. Employing such a MCT perspective generates a broad series of predictions about eusocial life histories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abbot P, Abe J, Alcock J et al (2011) Inclusive fitness theory and eusociality. Nature 471:1–4

    Article  Google Scholar 

  • Adams ES, Atkinson L (2008) Queen fecundity and reproductive skew in the termite Nasutitermes corniger. Insect Soc 55:28–36

    Article  Google Scholar 

  • Ågren JA, Davies NG, Foster KR (2019) Enforcement is central to the evolution of cooperation. Nat Ecol Evol 3:1018–1029

    Article  PubMed  Google Scholar 

  • Anderson KE, Gadau J, Mott BM, Johnson RA, Altamirano A, Strehl C, Fewell JH (2006) Distribution and evolution of genetic caste determination in Pogonomyrmex seed-harvester ants. Ecology 87:2171–2184

    Article  PubMed  Google Scholar 

  • Aubret F, Bonnet X, Shine R (2007) The role of adaptive plasticity in a major evolutionary transition: early aquatic experience affects locomotor performance of terrestrial snakes. Funct Ecol 21:1154–1161

    Article  Google Scholar 

  • Batra SWT (1966) Nests and social behavior of halictine bees of India. Indian J Entomol 28:375–393

    Google Scholar 

  • Beekman M, Ratnieks FLW (2003) Power over reproduction in social hymenoptera. Phil Trans R Soc Lond B 358:1741–1753

    Article  Google Scholar 

  • Bernadou A, Kramer BH, Korb J (2021) Major evolutionary transitions in social insects, the importance of worker Sterility and life history trade-offs. Front Ecol Evol 9:732907

    Article  Google Scholar 

  • Birch J (2014) Hamilton’s rule and its discontents. Brit J Phil Sci 65:381–411

    Article  Google Scholar 

  • Boomsma JJ (2023) Domains and major evolutionary transitions of social evolution. Oxford University Press, Oxford

    Google Scholar 

  • Boomsma JJ, Gawne R (2018) Superorganismality and caste differentiation as points of no return: how the major evolutionary transitions were lost in translation. Biol Rev 93:28–54

    Article  PubMed  Google Scholar 

  • Bourke AFG (1999) Colony size, social complexity and reproductive conflict in social insects. J Evol Biol 12:245–257

    Article  Google Scholar 

  • Bourke AFG (2011a) Principles of social evolution. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Bourke AFG (2011b) The validity and value of inclusive fitness theory. Proc R Soc B 278:3313–3320

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourke AFG (2019) Inclusive fitness and the major transitions in evolution. Curr Opin Insect Sci 34:61–67

    Article  PubMed  Google Scholar 

  • Buss LW (1987) The evolution of individuality. Princeton University Press, Princeton

    Google Scholar 

  • Calcott B, Sterelny K (2011) The major transitions in evolution revisited. MIT Press, Cambridge MA

    Book  Google Scholar 

  • Carmel Y (2023) Human societal development: Is it an evolutionary transition in individuality? Phil Trans R Soc B 378:20210409

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmel Y, Shavit A (2020) Operationalizing evolutionary transitions in individuality. Proc R Soc B 287:20192805

    Article  PubMed  PubMed Central  Google Scholar 

  • Corning PA, Szathmáry E (2015) “Synergistic selection”: a Darwinian frame for the evolution of complexity. J Theor Biol 371:45–58

    Article  PubMed  Google Scholar 

  • da Silva J (2021) Life history and the transitions to eusociality in the Hymenoptera. Front Ecol Evol 9:727124

    Article  Google Scholar 

  • Davies NG, Gardner A (2018) Monogamy promotes altruistic sterility in insect societies. R Soc Open Sci 5:172190

    Article  PubMed  PubMed Central  Google Scholar 

  • Denton KK, Ram Y, Feldman MW (2023) Conditions that favour cumulative cultural evolution. Phil Trans R Soc B 378:20210400

    Article  PubMed  PubMed Central  Google Scholar 

  • Durand PM, Barreto Filho MM, Michod RE (2019) Cell death in evolutionary transitions in individuality. Yale J Biol Med 92:651–662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner A, Grafen A (2009) Capturing the superorganism: a formal theory of group adaptation. J Evol Biol 22:659–671

    Article  CAS  PubMed  Google Scholar 

  • Gardner A, West SA (2014) Inclusive fitness: 50 years on. Phil Trans R Soc B 369:20130356

    Article  PubMed  PubMed Central  Google Scholar 

  • Grüter C (2020) Evolution and diversity of stingless bees. In: Stingless Bees. Fascinating Life Sciences. Springer, Cham.

  • Helms Cahan S, Julian GE, Schwander T, Keller L (2006) Reproductive isolation between Pogonomyrmex rugosus and two lineages with genetic caste determination. Ecology 87:2160–2170

    Article  Google Scholar 

  • Herron MD (2021) What are the major transitions? Biol Philos 36:1–19

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  • Hughes WO, Oldroyd BP, Beekman M, Ratnieks FL (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320:1213–1216

    Article  CAS  PubMed  Google Scholar 

  • Huisken JL, Rehan SM (2022) Effects of nutritional manipulation on intranidal social behaviour in a small carpenter bee. Anim Behav 191:135–141

    Article  Google Scholar 

  • Hunt JH (2007) The evolution of social wasps. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  • Jablonka E, Lamb MJ (2006) The evolution of information in the major transitions. J Theor Biol 239:236–246

    Article  CAS  PubMed  Google Scholar 

  • Kaib M, Hacker M, Brandl R (2001) Egg-laying in monogynous and polygynous colonies of the termite Macrotermes michaelseni (Isoptera, Macrotermitidae). Insect Soc 48:231–237

    Article  Google Scholar 

  • Kapheim KM, Nonacs P, Smith AR, Wayne RK, Wcislo WT (2015) Kinship, parental manipulation and evolutionary origins of eusociality. Proc R Soc B 282:20142886

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapheim KM, Smith AR, Ihle KE, Amdam GV, Nonacs P, Wcislo WT (2012) Physiological variation as a mechanism for developmental caste-biasing in a facultatively eusocial sweat bee. Proc R Soc B 279:1437–1446

    Article  PubMed  Google Scholar 

  • Kapheim KM, Smith AR, Nonacs P, Wcislo WT, Wayne RK (2013) Foundress polyphenism and the origins of eusociality in a facultatively eusocial sweat bee, Megalopta genalis (Halictidae). Behav Ecol Sociobiol 67:331–340

    Article  Google Scholar 

  • Karnkowska A, Vacek V, Zubáčová Z et al (2016) A eukaryote without a mitochondrial organelle. Curr Biol 26:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Kennedy P, Sumner S, Botha P, Welton NJ, Higginson AD, Radford AN (2021) Diminishing returns drive altruists to help extended family. Nature Ecol Evol 5:468–479

    Article  CAS  Google Scholar 

  • Koonin EV (2016) Viruses and mobile elements as drivers of evolutionary transitions. Phil Trans R Soc B 371:20150442

    Article  PubMed  PubMed Central  Google Scholar 

  • Korb J, Heinze J (2016) Major hurdles for the evolution of sociality. Ann Rev Entomol 61:297–316

    Article  CAS  Google Scholar 

  • Kun A (2021) The major evolutionary transitions and codes of life. BioSystems 210:104548

    Article  PubMed  Google Scholar 

  • Lacey EA, Sherman PW (2005) Redefining eusociality: concepts, goals and levels of analysis. Ann Zool Fenn 42:573–577

    Google Scholar 

  • Lengronne T, Mlynski D, Patalano S, James R, Keller L, Sumner S (2021) Multi-level social organization and nest-drifting behaviour in a eusocial insect. Proc R Soc Lond B 288:20210275

    Google Scholar 

  • Majoe M, Libbrecht R, Foitzik S, Nehring V (2021) Queen loss increases worker survival in leaf-cutting ants under paraquat-induced oxidative stress. Phil Trans R Soc B 376:20190735

    Article  PubMed  PubMed Central  Google Scholar 

  • Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation. MIT Press, Cambridge MA

    Google Scholar 

  • Marshall JAR (2016) What is inclusive fitness theory, and what is it for? Curr Opinion Behav Sci 12:103–108

    Article  Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford UK

    Google Scholar 

  • Michod RE (1999) Darwinian dynamics: evolutionary transitions in fitness and individuality. Princeton University Press, Princeton

    Google Scholar 

  • Moffett MW (2012) Supercolonies, nests, and societies: distinguishing the forests from the trees. Behav Ecol 29:938–939

    Article  Google Scholar 

  • Møller AP (2000) Male parental care, female reproductive success, and extrapair paternity. Behav Ecol 11:161–168

    Article  Google Scholar 

  • Nonacs P (1988) Queen number in colonies of social Hymenoptera as a kin-selected adaptation. Evolution 42:566–580

    PubMed  Google Scholar 

  • Nonacs P (1993a) The effects of polygyny and colony life history on optimal sex investment. In: Keller L (ed) Queen number and sociality in insects. Oxford University Press, London, pp 110–131

    Chapter  Google Scholar 

  • Nonacs P (1993b) The economics of brood-raiding and nest-consolidation during ant colony founding. Evol Ecol 7:625–633

    Article  Google Scholar 

  • Nonacs P (2011) Monogamy and high relatedness do not preferentially favor the evolution of cooperation. BMC Evol Biol 11:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Nonacs P (2014) Resolving the evolution of sterile worker castes: a window on the advantages and disadvantages of monogamy. Biol Lett 10:20140089

    Article  PubMed  PubMed Central  Google Scholar 

  • Nonacs P (2017) Go high or go low? Adaptive evolution of high and low relatedness societies in social Hymenoptera. Front Ecol Evol 5:87

    Article  Google Scholar 

  • Nonacs P (2019) Hamilton’s rule is essential but insufficient for understanding monogamy’s role in social evolution. R Soc Open Sci 6:180913

    Article  PubMed  PubMed Central  Google Scholar 

  • Nonacs P (2023) Why do Hymenopteran workers drift to non-natal groups? Generalized reciprocity and the maximization of group and parental success. J Evol Biol 36:1365–1374

    Article  PubMed  Google Scholar 

  • Nonacs P, Hager R (2011) The past, present and future of reproductive skew theory and experiments. Biol Rev 86:271–298

    Article  PubMed  Google Scholar 

  • Nonacs P, Reeve HK (1993) Opportunistic adoption of orphaned nests in paper wasps as an alternative reproductive strategy. Behav Process 30:47–60

    Article  CAS  Google Scholar 

  • Nonacs P, Reeve HK (1995) The ecology of cooperation in wasps: causes and consequences of alternative reproductive decisions. Ecology 76:953–967

    Article  Google Scholar 

  • Nonacs P, Tobin JE (1992) Selfish larvae: development and the evolution of parasitic behavior in the Hymenoptera. Evolution 46:1605–1620

    Article  PubMed  Google Scholar 

  • Nonacs P, Tolley SJ (2014) Certainty versus stochasticity: cell replication biases DNA movement from endosymbionts and organelles into nuclei. Evol Ecol Res 16:195–202

    Google Scholar 

  • Nowak MA, McAvoy A, Allen B, Wilson EO (2017) The general form of Hamilton’s rule makes no predictions and cannot be tested empirically. PNAS 114:5665–5670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okasha S (2022) The major transitions in evolution—A philosophy-of-science perspective. Front Ecol Evol 10:793824

    Article  Google Scholar 

  • Olejarz JW, Allen B, Veller C, Nowak MA (2015) The evolution of non-reproductive workers in insect colonies with haplodiploid genetics. eLIFE 4:e08918

  • Oldroyd BP, Fewell JH (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol Evol 22:408–413

    Article  PubMed  Google Scholar 

  • Oster GF, Wilson EO (1978) Caste and ecology in social insects. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Pernu TK, Helanterä H (2019) Genetic relatedness and its causal role in the evolution of insect societies. J Biosci 44:107

    Article  PubMed  Google Scholar 

  • Porter SD, Jorgensen CD (1981) Foragers of the harvester ant, Pogonomyrmex owyheei: a disposable caste? Behav Ecol Sociobiol 9:247–256

    Article  Google Scholar 

  • Pull CD, McMahon DP (2020) Superorganism immunity: A major transition in immune system evolution. Front Ecol Evol 8:186

    Article  Google Scholar 

  • Qiu Y (2008) Phylogeny and evolution of charophytic algae and land plants. J Syst Evol 46:287–306

    Google Scholar 

  • Rabeling C, Kronauer DJC (2013) Thelytokous parthenogenesis in eusocial hymenoptera. Ann Rev Entomol 58:273–292

    Article  CAS  Google Scholar 

  • Reeve HK (1991) Polistes. In: The social biology of wasps (Ross KG, Matthews RW, eds). Comstock, Ithaca, NY pp:99–148.

  • Rehan SM, Richards MH, Adams M, Schwarz MP (2014) The costs and benefits of sociality in a facultatively social bee. Anim Behav 97:77–85

    Article  Google Scholar 

  • Richards MH, French D, Paxton RJ (2005) It’s good to be queen: classically eusocial colony structure and low worker fitness in an obligately social sweat bee. Mole Ecol 14:4123–4133

    Article  Google Scholar 

  • Robin AN, Denton KK, Horna Lowell ES, Dulay T, Ebrahimi S, Johnson GC, Mai D, O’Fallon S, Philson CS, Speck HP, Zhang XP, Nonacs P (2021) Major evolutionary transitions and the roles of facilitation and information in ecosystem transformations. Front Ecol Evol 9:711556

    Article  Google Scholar 

  • Rose CJ, Hammerschmidt K (2021) What do we mean by multicellularity? The evolutionary transitions framework provides answers. Front Ecol Evol 9:730714

    Article  Google Scholar 

  • Ross KG, Visscher PK (1983) Reproductive plasticity in yellowjacket wasps: a polygynous, perennial colony of Vespula maculifrons. Psyche 90:179–191

    Article  Google Scholar 

  • Schwab JA, Young MT, Neenan JM, Walsh SA, Witmer LM, Herrera Y et al (2020) Inner ear sensory system changes as extinct crocodylomorphs transitioned from land to water. Proc Natl Acad Sci USA 117:10422–10428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaffer ZJ, Dreyer S, Clark RM, Pratt SC, Fewell JH (2022) Efficient allocation of labor maximizes brood development and explains why intermediate-sized groups perform best during colony-founding in the ant. Pogonomyrmex californicus Front Ecol Evol 10:768752

    Article  Google Scholar 

  • Shell WA, Steffen MA, Pare HK, Seetharam AS, Severin AJ, Toth AL, Rehan SM (2021) Sociality sculpts similar patterns of molecular evolution in two independently evolved lineages of eusocial bees. Commun Biol 4:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman PW, Lacey EA, Reeve HK, Keller L (1995) The eusociality continuum. Behav Ecol 6:102–108

    Article  Google Scholar 

  • Simpson GG (1953) The major features of evolution. Columbia University Press, New York, NY

    Book  Google Scholar 

  • Staps M, van Gestel J, Tarnita CE (2022) Life cycles as a central organizing theme for studying multicellularity. In: Herron MD, Conlin PL, Ratcliff WC (eds) The evolution of multicellularity. CRC Press, Evolutionary Cell Biology series, pp 53–70

    Chapter  Google Scholar 

  • Sumner S, Bell E, Taylor D (2018) A molecular concept of caste in insect societies. Curr Opinion Insect Sci 25:42–50

    Article  Google Scholar 

  • Sumner S, Favreau E, Geist K, Toth AL, Rehan SM (2023) Molecular patterns and processes in evolving sociality: lessons from insects. Phil Trans R Soc B 378:20220076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumner S, Lucas E, Barker J, Isaac N (2007) Radio-tagging technology reveals extreme nest-drifting behavior in a eusocial insect. Curr Biol 17:140–145

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Fu X, Ma G, Hutchins AP (2021) Chromatin and epigenetic rearrangements in embryonic stem cell fate transitions. Front Cell Dev Biol 9:637309

    Article  PubMed  PubMed Central  Google Scholar 

  • Szathmáry E (2015) Toward major evolutionary transitions theory 2.0. Proc Natl Acad Sci USA 112:10104–10111

    Article  PubMed  PubMed Central  Google Scholar 

  • Taborsky M, Cant M, Komdeur J (2021) The evolution of social behaviour. Cambridge University Press, London

    Book  Google Scholar 

  • Umphrey GJ (2006) Sperm parasitism in ants: selection for interspecific mating and hybridization. Ecology 87:2148–2159

    Article  PubMed  Google Scholar 

  • Van Buggenum HJM (2022) Presence after three decades of red wood ants (Formica rufa group; Hymenoptera: Formicidae) in forests in an agricultural landscape. Euro J Entomol 119:85–91

    Article  Google Scholar 

  • Van Etten J, Bhattacharya D (2020) Horizontal gene transfer in eukaryotes: Not if, but how much? Trends Gen 36:915–925

    Article  Google Scholar 

  • Vauvert K, Hviid R, Malchau SS, Pinborg A, Nielsen HS (2018) Determinants of monozygotic twinning in ART: a systematic review and a meta-analysis. Human Repro Update 24:468–483

    Article  Google Scholar 

  • West SA, Fisher RM, Gardner A, Kiers ET (2015) Major evolutionary transitions in individuality. Proc Natl Acad Sci USA 112:10112–10119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zachar I, Boza G (2020) Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell Mole Life Sci 77:3503–3523

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Nonacs.

Ethics declarations

Conflict of interest

Neither PN nor KKD have any financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nonacs, P., Denton, K.K. Eusociality is not a major evolutionary transition, and why that matters. Insect. Soc. 71, 17–27 (2024). https://doi.org/10.1007/s00040-023-00942-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-023-00942-3

Keywords

Navigation