Skip to main content
Log in

How host diet impact the life of termitophiles: insights from the CorotocaConstrictotermes cyphergaster relationship

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Termites (Blattodea: Isoptera) participate in interactions with various other species of organisms. Many termite-associated invertebrates, such as Corotocini beetles (Staphylinidae: Aleocharinae), have direct interactions with their hosts. These insects are fed by the host colony’s workers via stomodeal trophallaxis. The best-known termite–termitophile system occurs between Constrictotermes cyphergaster (Nasutitermitinae) and Corotoca spp. (Aleocharinae), but the feeding ecology of this relationship remains mostly unknown. Here, we evaluated the effect of the quality of food consumed by the host colony’s workers on the survival of termitophiles. We tested the hypothesis that different resources would affect beetle survival, with the expectation that the consumption of lichen as a food resource would reduce beetle survival. In addition, we quantified the frequency of trophallactic interactions based on the proposed treatments. We observed that beetles fed by termites that consumed lichen biomass survived for less time than the control group. The analyses also revealed that when food was ingested, there is a higher frequency of trophallaxis between the beetles and termites regardless of the resource ingested. This result could be interpreted as a physiological process of the beetles and a manifestation of perceptual capacity. Based on these findings, we hypothesize that Corotoca termitophiles might use gustatory cues as indicators of colony activities, such as foraging, which is when termitophiles perform larviposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data used in the analyses may be made available upon reasonable request.

References

  • Alves TLB, de Azevedo PV, Costa dos Santos CA (2017) Influence of climate variability on land degradation (desertification) in the watershed of the upper Paraíba River. Theoret Appl Climatol 127(3):741–751. https://doi.org/10.1007/s00704-015-1661-1

    Article  Google Scholar 

  • Asplund J, Solhaug KA, Gauslaa Y (2010) Optimal defense: Snails avoid reproductive parts of the lichen Lobaria scrobiculata due to internal defense allocation. Ecology 91(10):3100–3105

    Article  PubMed  Google Scholar 

  • Barbosa-Silva AM, Da Silva AC, Pereira ECG, de Buril M (2019) Richness of lichens consumed by Constrictotermes cyphergaster in the semi-arid region of Brazil. Sociobiology 66(1):154–160

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48

    Article  Google Scholar 

  • Boch S, Fischer M, Prati D (2015) To eat or not to eat—Relationship of lichen herbivory by snails with secondary compounds and field frequency of lichens. J Plant Ecol 8(6):642–650

    Google Scholar 

  • Brasil DF, Guimarães-Brasil MO, Hrncir M (2020) Which is the best field method for assessing volume and surface area of arboreal termite nests? Insectes Soc 67(3):399–410. https://doi.org/10.1007/s00040-020-00774-5

    Article  Google Scholar 

  • Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180

    Article  CAS  PubMed  Google Scholar 

  • Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69(1):145–166

    Article  CAS  PubMed  Google Scholar 

  • Burd M, Aranwela N (2003) Head-on encounter rates and walking speed of foragers in leaf-cutting ant traffic. Insectes Soc 50(1):3–8. https://doi.org/10.1007/s000400300001

    Article  Google Scholar 

  • Castiblanco J, Lima BSA, de Carvalho YC, Clemente LO, Pisno RM, DeSouza O (2021) Mate finding in a mimetic termitophile amidst its host termites. Ethology 128(3):223–231

    Article  Google Scholar 

  • Coe HHG, de Sousa LOF (2014) The brazilian “caatinga”: ecology and vegetal biodiversity of a semiarid region. In: Greer FE (ed) Dry forests: ecology, species diversity, and sustainable management. Nova publishers, pp 81–104

    Google Scholar 

  • Constantino, R. (2020). Termite Database. University of Brasilia. http://termitologia.net

  • Cristaldo P, Rosa C, Florencio D, Marins A, DeSouza O (2012) Termitarium volume as a determinant of invasion by obligatory termitophiles and inquilines in the nests of Constrictotermes cyphergaster (Termitidae, Nasutitermitinae). Insectes Soc 59(4):541–548

    Article  Google Scholar 

  • da Cunha HF, Brandão D (2001) Invertebrates associated with the neotropical termite Constrictotermes cyphergaster (Isoptera: Termitidae, Nasutitermitinae). Sociobiology 37(3):593–600

    Google Scholar 

  • de Carvalho YC, Clemente LO, Guimarães MP, DeSouza O (2018) Suitable light regimes for filming termites in laboratory bioassays. Sociobiology 65(1):108–111

    Article  Google Scholar 

  • de Oliveira MH, Da VRV, Moreira IE, Pires-Silva CM, de Lima HVG, de Andrade MR (2018) The road to reproduction: Foraging trails of Constrictotermes cyphergaster (Termitidae: Nasutitermitinae) as maternities for Staphylinidae beetles. Sociobiology 65(3):531–533. https://doi.org/10.13102/sociobiology.v65i3.2902

    Article  Google Scholar 

  • de Oliveira MH, Viana-Junior AB, Rolim M, Eloi I, de Andrade MR, de Souza JJLL, Bezerra-Gusmão MA (2022) The impact of Constrictotermes cyphergaster (Termitidae: Nasutitermitinae) termites on semiarid ecosystems in brazil: a review of current research. Insects 13(8):8. https://doi.org/10.3390/insects13080704

    Article  Google Scholar 

  • Dussutour A, Fourcassié V, Helbing D, Deneubourg J-L (2004) Optimal traffic organization in ants under crowded conditions. Nature 428:6978. https://doi.org/10.1038/nature02345

    Article  CAS  Google Scholar 

  • Emmerich R, Giez I, Lange OL, Proksch P (1993) Toxicity and antifeedant activity of lichen compounds against the polyphagous herbivorous insect Spodoptera littoralis. Phytochemistry 33(6):1389–1394. https://doi.org/10.1016/0031-9422(93)85097-B

    Article  CAS  Google Scholar 

  • Ferreira DV, Cruz JS, Sacramento JJM, Rocha MLC, Cristaldo PF, Araújo APA (2019) Effect of temperature and substrate moisture on group survival of Constrictotermes sp. (Isoptera: Termitidae) under laboratory conditions. Revista Brasileira de Entomologia 63:9–11

    Article  Google Scholar 

  • Friard O, Gamba M (2016) BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evol 7(11):1325–1330

    Article  Google Scholar 

  • Gauslaa Y (2005) Lichen palatability depends on investments in herbivore defence. Oecologia 143(1):94–105

    Article  PubMed  Google Scholar 

  • Gerson U (1973) Lichen-arthropod associations. Lichenologist 5(5–6):434–443. https://doi.org/10.1017/s0024282973000484

    Article  Google Scholar 

  • Gil M, De Marco RJ (2005) Olfactory learning by means of trophallaxis in Apis mellifera. J Exp Biol 208(4):671–680. https://doi.org/10.1242/jeb.01474

    Article  PubMed  Google Scholar 

  • Gil M, Farina WM (2003) Crop scents affect the occurrence of trophallaxis among forager honeybees. J Comp Physiol A 189(5):379–382. https://doi.org/10.1007/s00359-003-0412-4

    Article  CAS  Google Scholar 

  • Grassé pp. (1986) Termitologia tome comportement socialité, écologie évolution systématique. Elsevier Masson. 2:407

    Google Scholar 

  • Grüter C, Acosta LE, Farina WM (2006) Propagation of olfactory information within the honeybee hive. Behav Ecol Sociobiol 60(5):707–715. https://doi.org/10.1007/s00265-006-0214-0

    Article  Google Scholar 

  • Hager FA, Krausa K, Kirchner WH (2019) Vibrational behavior in termites (Isoptera). In: Hill PSM, Lakes-Harlan R, Mazzoni V, Narins PM, Virant-Doberlet M, Wessel A (eds) Biotremology: Studying vibrational behavior. Springer International Publishing. Cham, pp 309–327

    Chapter  Google Scholar 

  • Hartig, F. (2020). DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. https://CRAN.R-project.org/package=DHARMa

  • He S, Johnston PR, Kuropka B, Lokatis S, Weise C, Plarre R, Kunte H-J, McMahon DP (2018) Termite soldiers contribute to social immunity by synthesizing potent oral secretions. Insect Mol Biol 27(5):564–576. https://doi.org/10.1111/imb.12499

    Article  CAS  PubMed  Google Scholar 

  • Hesbacher S, Giez I, Embacher G, Fiedler K, Max W, Trawöger A, Türk R, Lange OL, Proksch P (1995) Sequestration of lichen compounds by lichen-feeding members of the Arctiidae (Lepidoptera). J Chem Ecol 21(12):2079–2089. https://doi.org/10.1007/BF02033864

    Article  CAS  PubMed  Google Scholar 

  • Howard RW (1978) Proctodeal feeding by termitophilous staphylinidae associated with Reticulitermes virginicus (Banks). Science 201(4355):541–543

    Article  CAS  PubMed  Google Scholar 

  • Hugo H, Cristaldo PF, DeSouza O (2020) Nonaggressive behavior: a strategy employed by an obligate nest invader to avoid conflict with its host species. Ecol Evol 10(16):8741–8754

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaffe K, Issa S, Sainz-Borgo C (2011) Chemical recruitment for foraging in ants (Formicidae) and termites (Isoptera): a revealing comparison. Psyche A J Entomol. 2012:e694910. https://doi.org/10.1155/2012/694910

    Article  Google Scholar 

  • Kistner DH, Jacobson H (1976) New species and new records of termitophilous species from central America and Mexico with description of behavior, related glands and ultrastructure (Coleoptera: Staphylinidae). Sociobiology 2(1):1–76

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • LeBoeuf AC (2021) Trophallaxis. In: Starr CK (ed) Encyclopedia of social insects. Springer International Publishing. Cham, pp 972–976

    Chapter  Google Scholar 

  • LeBoeuf AC, Waridel P, Brent CS, Gonçalves AN, Menin L, Ortiz D, Riba-Grognuz O, Koto A, Soares ZG, Privman E (2016) Oral transfer of chemical cues, growth proteins and hormones in social insects. Elife 5:e20375. https://doi.org/10.7554/eLife.20375

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenth, R. V. (2021). Emmeans: Estimated Marginal Means, aka Least-Squares Means. https://CRAN.R-project.org/package=emmeans

  • Lima JT, Costa-Leonardo AM (2007) Recursos alimentares explorados pelos cupins (Insecta: Isoptera). Biota Neotrop 7(2):243–250

    Article  Google Scholar 

  • Martin, P., & Bateson, P. (2007). Measuring Behaviour: An Introductory Guide (3rd eds). Cambridge University Press. Doi: https://doi.org/10.1017/9781108776462

  • McMahan E (1969) Feeding relationships and radio-isotope techniques. In: Krishna K, Weesner FM (eds) Biology of termites. Academic Press, USA

    Google Scholar 

  • Meurville M-P, LeBoeuf AC (2021) Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol News 31:1–30

    Google Scholar 

  • Miramontes O, DeSouza O (1996) The nonlinear dynamics of survival and social facilitation in termites. J Theor Biol 181(4):373–380

    Article  Google Scholar 

  • Moura FM, Vasconcellos A, de Araujo VFP, Bandeira AG (2006) Feeding habit of Constrictotermes cyphergaster (Isoptera, Termitidae) in an area of Caatinga, northeast Brazil. Sociobiology 48(2):21–16

    Google Scholar 

  • Mukherjee S, Heithaus MR, Trexler JC, Ray-Mukherjee J, Vaudo J (2014) Perceived risk of predation affects reproductive life-history traits in Gambusia holbrooki, but not in Heterandria formosa. PLoS ONE 9(2):e88832

    Article  PubMed  PubMed Central  Google Scholar 

  • Nalepa CA (2015) Origin of termite eusociality: Trophallaxis integrates the social, nutritional, and microbial environments. Ecol Entomol 40(4):323–335

    Article  Google Scholar 

  • Noirot C (1952) Les soins et l’alimentation des jeunes chez les Termites. Annales Des Sciences Naturelles, Zoologie 11(14):2–4

    Google Scholar 

  • Orlov I, Newton AF, Solodovnikov A (2021) Phylogenetic review of the tribal system of Aleocharinae, a mega-lineage of terrestrial arthropods in need of reclassification. J Zool Syst Evol Res 59(8):1903–1938

    Article  Google Scholar 

  • Parmentier T (2019) Guests of social insects. In: Starr C (ed) Encyclopedia of social insects. Springer International Publishing, pp 1–15

    Google Scholar 

  • Pasteels JM (1969) Les glandes tégumentaires des staphylins termitophiles. Les Aleocharinae des genres Termitopullus (Corotocini, Corotocina), Perinthodes, Catalina (Termitonannini, Perinthina), Termitusa (Termitohospitini, Termitusina). Insectes Sociaux. 16 (1): 1–26

  • Pinder JE, Wiener JG, Smith MH (1978) The weibull distribution: a new method of summarizing survivorship data. Ecology 59(1):175–179. https://doi.org/10.2307/1936645

    Article  Google Scholar 

  • Pisno RM, Salazar K, Lino-Neto J, Serrão JE, DeSouza O (2019) Termitariophily: expanding the concept of termitophily in a physogastric rove beetle (Coleoptera: Staphylinidae). Ecol Entomol 44(3):305–314. https://doi.org/10.1111/een.12709

    Article  Google Scholar 

  • Pöykkö H, Bačkor M, Bencúrová E, Molcanová V, Bačkorová M, Hyvärinen M (2010) Host use of a specialist lichen-feeder: dealing with lichen secondary metabolites. Oecologia 164(2):423–430. https://doi.org/10.1007/s00442-010-1682-5

    Article  PubMed  Google Scholar 

  • Provecho Y, Josens R (2009) Olfactory memory established during trophallaxis affects food search behaviour in ants. J Exp Biol 212(20):3221–3227. https://doi.org/10.1242/jeb.033506

    Article  PubMed  Google Scholar 

  • R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing

  • Rosa CS, Cristaldo PF, Florencio DF, Marins A, Lima ER, DeSouza O (2018) On the chemical disguise of a physogastric termitophilous rove beetle. Sociobiology 65(1):38–47. https://doi.org/10.13102/sociobiology.v65i1.1942

    Article  Google Scholar 

  • Scheffrahn RH, Bourguignon T, Bordereau C, Hernandez-Aguilar RA, Oelze VM, Dieguez P, Šobotnik J, Pascual-Garrido A (2017) White-gutted soldiers: Simplification of the digestive tube for a non-particulate diet in higher Old World termites (Isoptera: Termitidae). Insectes Soc 64(4):525–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seevers CH (1957) A Monograph on the Termitophilous Staphylinidae (Coleoptera). Fieldiana Zool. 40:1–334

    Google Scholar 

  • Silvestri F (1903) Contribuzione alla conoscenza dei termitidi e termitofili dell’ America Meridionale. Redia 1:1–234

    Google Scholar 

  • Slansky F Jr (1979) Effect of the lichen chemicals atranorin and vulpinic acid upon feeding and growth of larvae of the yellow-striped armyworm. Spodoptera ornithogalli Environm Entomol 8(5):865–868. https://doi.org/10.1093/ee/8.5.865

    Article  CAS  Google Scholar 

  • Suárez ME, Thorne BL (2000) Rate, amount, and distribution pattern of alimentary fluid transfer via trophallaxis in three species of termites (Isoptera: Rhinotermitidae, Termopsidae). Ann Entomol Soc Am 93(1):145–155. https://doi.org/10.1603/0013-8746(2000)093[0145:RAADPO]2.0.CO;2

    Article  Google Scholar 

  • Therneau TM, Grambsch PM (2000) Modeling survival data: extending the cox model. Springer, New York

    Book  Google Scholar 

  • Tragust S, Mitteregger B, Barone V, Konrad M, Ugelvig LV, Cremer S (2013) Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Curr Biol 23(1):76–82. https://doi.org/10.1016/j.cub.2012.11.034

    Article  CAS  PubMed  Google Scholar 

  • Traniello JF, Busher C (1985) Chemical regulation of polyethism during foraging in the neotropical termite Nasutitermes costalis. J Chem Ecol 11(3):319–332. https://doi.org/10.1007/BF01411418

    Article  CAS  PubMed  Google Scholar 

  • Vasconcellos A, Araújo V, Moura FM, Bandeira A (2007) Biomass and population structure of Constrictotermes cyphergaster (Silvestri) (Isoptera: Termitidae) in the dry forest of caatinga, northeastern Brazil. Neotrop Entomol 36(5):693–698. https://doi.org/10.1590/S1519-566X2007000500009

    Article  PubMed  Google Scholar 

  • War AR, Buhroo AA, Hussain B, Ahmad T, Nair RM, Sharma HC (2020) Plant defense and insect adaptation with reference to secondary metabolites. In: Mérillon J-M, Ramawat KG (eds) Co-evolution of secondary metabolites. Springer International Publishing. Cham, pp 795–822

    Chapter  Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press

    Google Scholar 

  • Zilberman B, Pires-Silva CM, Moreira IE, Pisno RM, Bezerra-Gusmão MA (2019) State of knowledge of viviparity in Staphylinidae and the evolutionary significance of this phenomenon in Corotoca Schiødte, 1853. Papéis Avulsos De Zoologia 59:e20195919–e20195919

    Article  Google Scholar 

Download references

Acknowledgements

We thank Carla Gomes and Cicero Nascimento for allowing us to collect biological material on their property and for their gracious hospitality. Dr. Paulo Cristaldo gave valuable suggestions on earlier drafts of this work. Over the course of this study, IE was supported by a CAPES scholarship and KGR by a CNPq/Pibic/UEPB scholarship.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized by IE and MABG. The field collections and bioessays were run by IE and KGR. Data analysis and first draft were prepared by IE. Funds raising and project coordination by MABG. All the authors provided discussion and edits to the final version of the manuscript.

Corresponding author

Correspondence to Igor Eloi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eloi, I., Ribeiro, K.G. & Bezerra-Gusmão, M.A. How host diet impact the life of termitophiles: insights from the CorotocaConstrictotermes cyphergaster relationship. Insect. Soc. 70, 317–325 (2023). https://doi.org/10.1007/s00040-023-00924-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-023-00924-5

Keywords

Navigation