Skip to main content
Log in

Commuting symplectomorphisms on a surface and the flux homomorphism

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let \((S,\omega )\) be a closed connected oriented surface whose genus l is at least two equipped with a symplectic form. Then we show the vanishing of the cup product of the fluxes of commuting symplectomorphisms. This result may be regarded as an obstruction for commuting symplectomorphisms. In particular, the image of an abelian subgroup of \(\textrm{Symp}^c_0(S, \omega )\) under the flux homomorphism is isotropic with respect to the natural intersection form on \(H^1(S;{\mathbb {R}})\). The key to the proof is a refinement of the non-extendability result, previously given by the first-named and second-named authors, for Py’s Calabi quasimorphism \(\mu _P\) on \(\textrm{Ham}^c(S, \omega )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Banyaga. Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique. Comment. Math. Helv., (2)53 (1978), 174–227.

  2. A. Banyaga. The Structure of Classical Diffeomorphism Groups Mathematics and Its Applications, Vol. 400. Kluwer Academic Publishers Group, Dordrecht (1997).

    Book  MATH  Google Scholar 

  3. C. Bavard. Longueur stable des commutateurs. Enseign. Math. (2), (1–2)37 (1991), 109–150.

  4. M. Brandenbursky, J. Kȩdra, and E. Shelukhin. On the autonomous norm on the group of Hamiltonian diffeomorphisms of the torus. Commun. Contemp. Math., (2)20 (2018), 1750042, 27.

  5. M. Brandenbursky. Bi-invariant metrics and quasi-morphisms on groups of Hamiltonian diffeomorphisms of surfaces. Int. J. Math., (9)26 (2015), 1550066, 29.

  6. L. Buhovsky. Towards the \(C^0\) flux conjecture. Algebr. Geom. Topol., (6)14 (2014), 3493–3508.

  7. E. Calabi. On the group of automorphisms of a symplectic manifold. In: Problems in Analysis (Lectures at the Symposium in honor of Salomon Bochner, Princeton University, Princeton, N.J., 1969) (1970), pp. 1–26.

  8. D. Calegari. scl, MSJ Memoirs, Vol. 20, Mathematical Society of Japan, Tokyo (2009).

    MATH  Google Scholar 

  9. A.C. Castro. Calabi quasimorphisms for monotone coadjoint orbits. J. Topol. Anal., (4)9 (2017), 689–706.

  10. D. Cristofaro-Gardiner, V. Humilière, and S. Seyfaddini. Proof of the simplicity conjecture, preprint, arxiv:2001.01792v1 (2020).

  11. M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology. Int. Math. Res. Not., (30)(2003), 1635–1676.

  12. M. Entov, L. Polterovich, and P. Py. On continuity of quasimorphisms for symplectic maps, Perspectives in analysis, geometry, and topology, Progr. Math., Vol. 296, Birkhäuser/Springer, New York, (2012), With an appendix by Michael Khanevsky, pp. 169–197.

  13. A. Fathi. Structure of the group of homeomorphisms preserving a good measure on a compact manifold. Ann. Sci. École Norm. Sup. (4), (1)13 (1980), 45–93.

  14. J. Franks and M. Handel. Distortion elements in group actions on surfaces. Duke Math. J., (3)131 (2006), 441–468.

  15. K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono. Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory. Mem. Amer. Math. Soc., (1254)260 (2019), x+266.

  16. J.-M. Gambaudo and É. Ghys. Enlacements asymptotiques. Topology, (6)36 (1997), 1355–1379.

  17. J.-M. Gambaudo and É. Ghys. Commutators and diffeomorphisms of surfaces. Ergodic Theory Dyn. Syst., (5)24 (2004), 1591–1617.

  18. V. Humilière. The Calabi invariant for some groups of homeomorphisms. J. Symplectic Geom., (1)9 (2011), 107–117.

  19. J. Kȩdra. Remarks on the flux groups. Math. Res. Lett., (2–3)7 (2000), 279–285.

  20. M. Kawasaki and M. Kimura. \(\hat{G}\)-invariant quasimorphisms and symplectic geometry of surfaces. Israel J. Math. (2)247 (2022), 845–871. MR 4425357.

  21. M. Kawasaki, M. Kimura, T. Matsushita, and M. Mimura. Bavard’s duality theorem for mixed commutator length. Enseign. Math. (3-4)68 (2022), 441–481.

  22. J. Kȩdra, A. Libman, and B. Martin. Strong and uniform boundedness of groups. J. Topol. Anal., Online Ready.

  23. M. Kawasaki and R. Orita. Rigid fibers of integrable systems on cotangent bundles. J. Math. Soc. Japan (3)74 (2022), 829–847. https://doi.org/10.2969/jmsj/84278427.

  24. F. Lalonde, D. McDuff, and L. Polterovich. On the flux conjectures, Geometry, topology, and dynamics (Montreal, PQ, 1995), CRM Proceedings Lecture Notes, Vol. 15, American Mathematical Society, Providence, RI (1998), pp. 69–85.

  25. R. Leclercq and F. Zapolsky. Spectral invariants for monotone Lagrangians. J. Topol. Anal., (3)10 (2018), 627–700.

  26. D. McDuff. Monodromy in Hamiltonian Floer theory. Comment. Math. Helv., (1)85 (2010), 95–133.

  27. D. McDuff and D. Salamon. Introduction to Symplectic Topology, third ed., Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford (2017).

  28. Y.-G. Oh and S. Müller. The group of Hamiltonian homeomorphisms and \(C^0\)-symplectic topology. J. Symplectic Geom., (2)5 (2007), 167–219.

  29. K. Ono. Floer–Novikov cohomology and the flux conjecture. Geom. Funct. Anal., (5)16 (2006), 981–1020.

  30. L. Polterovich. The Geometry of the Group of Symplectic Diffeomorphisms. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2001).

  31. L. Polterovich and D. Rosen. Function Theory on Symplectic Manifolds. CRM Monograph Series, Vol. 34. American Mathematical Society, Providence (2014).

  32. P. Py. Quasi-morphismes de Calabi et graphe de Reeb sur le tore. C. R. Math. Acad. Sci. Paris, (5)343 (2006), 323–328.

  33. P. Py. Quasi-morphismes et invariant de Calabi. Ann. Sci. École Norm. Sup. (4), (1)39 (2006), 177–195.

  34. M. Rosenberg. Py–Calabi quasi-morphisms and quasi-states on orientable surfaces of higher genus. Isr. J. Math., 180 (2010), 163–188.

    Article  MathSciNet  MATH  Google Scholar 

  35. G. Rousseau. Difféomorphismes d’une variété symplectique non compacte. Comment. Math. Helv., (4)53 (1978), 622–633.

Download references

Acknowledgements

We truly wish to thank the referees for useful comments and suggestions. We also thank Professors Masayuki Asaoka and Kaoru Ono, who have drawn the authors’ attention to Theorem 1.1. The first author is supported in part by JSPS KAKENHI Grant Numbers JP18J00765 and 21K13790. The second author is supported by JSPS KAKENHI Grant Number JP20H00114 and JST-Mirai Program Grant Number JPMJMI22G1. The third author and the fourth author are supported in part by JSPS KAKENHI Grant Numbers 19K14536 and 17H04822, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morimichi Kawasaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawasaki, M., Kimura, M., Matsushita, T. et al. Commuting symplectomorphisms on a surface and the flux homomorphism. Geom. Funct. Anal. 33, 1322–1353 (2023). https://doi.org/10.1007/s00039-023-00644-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-023-00644-9

Mathematics Subject Classification

Navigation