Skip to main content
Log in

A Tight Bound for Hyperaph Regularity

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

The hypergraph regularity lemma—the extension of Szemerédi’s graph regularity lemma to the setting of k-uniform hypergraphs—is one of the most celebrated combinatorial results obtained in the past decade. By now there are several (very different) proofs of this lemma, obtained by Gowers, by Nagle–Rödl–Schacht–Skokan and by Tao. Unfortunately, what all these proofs have in common is that they yield regular partitions whose order is given by the k-th Ackermann function. We show that such Ackermann-type bounds are unavoidable for every \(k \ge 2\), thus confirming a prediction of Tao. Prior to our work, the only result of this type was Gowers’ famous lower bound for graph regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This should be contrasted with the setting of graphs in which (almost) all notions of quasi-randomness are not only known to be equivalent but even effectively equivalent. See e.g. [CGW89].

  2. Another variant of the hypergraph regularity lemma was obtained in [ES12]. This approach does not supply any quantitative bounds.

  3. \({{\,\mathrm{Ack}\,}}_2(x)\) is thus a tower of exponents of height x, \({{\,\mathrm{Ack}\,}}_3(x)\) is the so-called wowzer function, etc.

  4. Since the full proofs of these assertions are given in a companion manuscript we put on the Arxiv [MS18], we will not explain here why the 3-graph regularity notion of [RS07a] is indeed stronger than those used in [FR02, Gow06].

  5. In a regularity lemma one allows the parts to differ in size by at most 1 so that it applies to all (hyper-)graphs. For our lower bound this is unnecessary.

  6. This is a standard notion, identical to the one used by Rödl and Schacht ([RS07a], Definition10).

  7. For \(k=3\), related notions of regularity were studied in [RRS16, Tow17].

  8. \(\prod _{j \ne i} V_j = V_1\times \cdots \times V_{i-1}\times V_{i+1}\times \cdots \times V_k\).

  9. Since we assume that each \(\mathcal {V}_i\) refines \(\{\mathbf {V}^1,\ldots ,\mathbf {V}^k\}\) then \(V_h(\mathcal {V}_i)\) is (recall (1)) the restriction of \(\mathcal {V}_i\) to \(\mathbf {V}^h\).

  10. That is to say, this definition is not symmetric with respect \(\mathbf {X}\),\(\mathbf {Y}\).

  11. We use the basic version stating that \(\mathbb {P}[\text {Bin}(n,p) \ge pn+t] \le \exp (-2t^2/n)\); see, e.g., [Hoe63].

  12. To be clear, all our graphs are bipartite on the vertex classes \((\mathbf {L},\mathbf {R})\).

  13. This in particular means that for (the single graph) \(G_0 \in \mathcal {G}_0\) we have that \(\widetilde{G}_0\) is \(K_{1,1}\), i.e., the single-edge graph.

  14. As noted following Theorem 3, the fact that Theorem 3 holds even with a fixed\(\delta =\delta (k)\) (which is allowed to be much larger than the edge density p) is crucial for our inductive proof strategy.

  15. On the other hand, if \(\delta \) is small compared to the density then a tripartite \(\langle \delta \rangle \)-regular graph does indeed have many triangles, using a standard proof of the counting lemma.

  16. In [RS07b], the statement of the ‘moreover’ part (Corollary 2.3, dense extension lemma) allows for \(\gamma |P^{(k-1)}|\) exceptional edges in \(P^{(k-1)}\) rather than only in \(P_k\), which is nevertheless essentially equivalent to our statement. Furthermore, they allow for counting not only k-cliques, in which case they do not need all \(P_i\) to be regular.

  17. To obtain the bound \(F_{k,\gamma }\) from the proof of Corollary 2.3 in [RS07b] (with \(h=k-1\) and \(\ell =k\)), one can verify that:

    • \(\epsilon (\mathbf {\mathcal {F}},\gamma ,d_0)\) in Theorem 2.2 can be bounded by \(\gamma (d_0/2)^{|\mathcal {F}^{(h)}|}\), and so \(\epsilon (K_{k}^{(k-1)},\gamma ,d_0) \le \gamma (d_0/2)^{2^k}\),

    • \(\beta \) in Fact 2.4 can be bounded by \(\gamma ^3/4\),

    • \(\epsilon _{GDCL}(\mathcal {D}(\mathcal {F}^{(h)},f),\frac{\beta }{3},d_0)\) in the proof of Corollary 2.3 can be bounded by \(\frac{\beta }{3}(d_0/2)^{2^{k+1}}\), using the first item and the fact that \(\mathcal {D}(\mathcal {F}^{(h)},f)\) has at most \(2k-(k-1)=k+1\) vertices.

References

  1. F. Chung, R. Graham and R. Wilson. Quasi-random graphs. Combinatorica., 9 (1989), 345–362.

    Article  MathSciNet  Google Scholar 

  2. D. Conlon and J. Fox. Bounds for graph regularity and removal lemmas. Geom. Funct. Anal., 22 (2012), 1191–1256.

    Article  MathSciNet  Google Scholar 

  3. D. Conlon and J. Fox. Graph removal lemmas. In S. Blackburn, S. Gerke, & M. Wildon (Eds.), Surveys in Combinatorics 2013 (London Mathematical Society Lecture Note Series). Cambridge University Press, Cambridge (2013), pp. 1–50.

    Google Scholar 

  4. G. Elek and B. Szegedy. A measure-theoretic approach to the theory of dense hypergraphs. Adv. Math., 231 (2012), 1731–1772.

    Article  MathSciNet  Google Scholar 

  5. P. Erdős, P. Frankl and V. Rödl. The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs Combin., 2 (1986), 113–121.

    Article  MathSciNet  Google Scholar 

  6. J. Fox. A new proof of the graph removal lemma. Ann. of Math., 174 (2011), 561–579.

    Article  MathSciNet  Google Scholar 

  7. J. Fox and L.M. Lovász. A tight lower bound for Szemerédi’s regularity lemma. Combinatorica, 37 (2017), 911–951.

    Article  MathSciNet  Google Scholar 

  8. P. Frankl and V. Rödl, Extremal problems on set systems. Random Struct. Alg., 20 (2002), 131–164.

    Article  MathSciNet  Google Scholar 

  9. H. Furstenberg and Y. Katznelson. An ergodic Szemerédi theorem for commuting transformations. J. Anal. Math., 34 (1978), 275–291.

    Article  Google Scholar 

  10. T. Gowers. Lower bounds of tower type for Szemerédi’s uniformity lemma. Geom. Funct. Anal., 7 (1997), 322–337.

    Article  MathSciNet  Google Scholar 

  11. T. Gowers. A new proof of Szemerédi’s theorem. Geom. Funct. Anal., 11 (2001), 465–588.

    Article  MathSciNet  Google Scholar 

  12. T. Gowers. Quasirandomness, counting and regularity for 3-uniform hypergraphs. Combin. Probab. Comput., 15 (2006), 143–184.

    Article  MathSciNet  Google Scholar 

  13. T. Gowers. Hypergraph regularity and the multidimensional Szemerédi theorem. Ann. of Math., 166 (2007), 897–946.

    Article  MathSciNet  Google Scholar 

  14. W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc., 58 (1963), 13–30.

    Article  MathSciNet  Google Scholar 

  15. S. Janson, T. Łuczak and A. Ruciński. Random Graphs. Wiley, Hoboken (2011).

    MATH  Google Scholar 

  16. S. Kalyanasundaram and A. Shapira. A wowzer-type lower bound for the strong regularity lemma. Proc. Lond. Math. Soc., 106 (2013), 621–649.

    Article  MathSciNet  Google Scholar 

  17. J. Komlós, A. Shokoufandeh, M. Simonovits and E. Szemerédi. The regularity lemma and its applications in graph theory. In: Theoretical Aspects of Computer Science: Advanced Lectures. Springer, Berlin (2002), pp. 84–112.

    Chapter  Google Scholar 

  18. G. Moshkovitz and A. Shapira. A short proof of Gowers’ lower bound for the regularity lemma. Combinatorica, 36 (2016), 187–194.

    Article  MathSciNet  Google Scholar 

  19. G. Moshkovitz and A. Shapira. A sparse regular approximation lemma. Trans. Amer. Math. Soc., 371 (2019), 6779–6814.

    Article  MathSciNet  Google Scholar 

  20. G. Moshkovitz and A. Shapira. A tight bound for hypergraph regularity I. arXiv:1804.05511.

  21. B. Nagle, A. Poerschke, V. Rödl and M. Schacht. Hypergraph regularity and quasi-randomness. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (2009), pp. 227–235.

  22. B. Nagle, V. Rödl and M. Schacht. The counting lemma for regular \(k\)-uniform hypergraphs. Random Struct. Alg., 28 (2006), 113–179.

    Article  MathSciNet  Google Scholar 

  23. V. Rödl. Quasi-randomness and the regularity method in hypergraphs. In: Proceedings of the International Congress of Mathematicians (ICM), Vol. 1 (2015), pp. 571–599.

  24. C. Reiher, V. Rödl and M. Schacht. Embedding tetrahedra into quasirandom hypergraphs. J. Combin. Theory Ser. B., 121 (2016), 229–247.

    Article  MathSciNet  Google Scholar 

  25. V. Rödl, B. Nagle, J. Skokan, M. Schacht and Y. Kohayakawa. The hypergraph regularity method and its applications. Proc. Natl. Acad. Sci. USA, 102 (2005), 8109–8113.

    Article  MathSciNet  Google Scholar 

  26. V. Rödl, E. Tengan, M. Schacht and N. Tokushige. Density theorems and extremal hypergraph problems. Israel J. Math., 152 (2006), 371–380.

    Article  MathSciNet  Google Scholar 

  27. V. Rödl and M. Schacht. Regular partitions of hypergraphs: regularity lemmas. Combin. Probab. Comput., 16 (2007), 833–885.

    Article  MathSciNet  Google Scholar 

  28. V. Rödl and M. Schacht. Regular partitions of hypergraphs: counting lemmas. Combin. Probab. Comput., 16 (2007), 887–901.

    Article  MathSciNet  Google Scholar 

  29. V. Rödl and M. Schacht. Regularity lemmas for graphs, Fete of Combinatorics and Computer Science. Bolyai Soc. Math. Stud., 20 (2010), 287–325.

    Article  Google Scholar 

  30. V. Rödl and J. Skokan. Regularity lemma for uniform hypergraphs. Random Struct. Alg., 25 (2004), 1–42.

    Article  MathSciNet  Google Scholar 

  31. K.F. Roth. On certain sets of integers (II). J. Lond. Math. Soc., 29 (1954), 20–26.

    Article  MathSciNet  Google Scholar 

  32. I.Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles, in Combinatorics (Keszthely, 1976). Coll. Math. Soc. J. Bolyai 18, Volume II, pp. 939–945.

  33. S. Shelah. Primitive recursive bounds for van der Waerden numbers. J. Amer. Math. Soc., 1 (1989), 683–697.

    Article  MathSciNet  Google Scholar 

  34. J. Solymosi. A note on a question of Erdős and Graham. Combin. Probab. Comput., 13 (2004), 263–267.

    Article  MathSciNet  Google Scholar 

  35. E. Szemerédi. On sets of integers containing no \(k\) elements in arithmetic progression. Acta Arith., 27 (1975), 199–245.

    Article  MathSciNet  Google Scholar 

  36. E. Szemerédi. Regular partitions of graphs, In: Proc. Colloque Inter. CNRS (1978), pp. 399–401.

  37. T. Tao. A variant of the hypergraph removal lemma. J. Combin. Theory Ser. A, 113 (2006), 1257–1280.

    Article  MathSciNet  Google Scholar 

  38. T. Tao, Szemerédi’s regularity lemma revisited. Contrib. Discrete Math., 1 (2006), 8–28.

    MathSciNet  MATH  Google Scholar 

  39. H. Towsner, \(\sigma \)-algebras for quasirandom hypergraphs. Random Struct. Alg., 50 (2017), 114–139.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to an anonymous referee for a careful reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaf Shapira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G. Moshkovitz: Supported in part by ERC Starting Grant 633509. A. Shapira: Supported in part by ISF Grant 1028/16 and ERC Starting Grant 633509.

Proof of Claim 5.4

Proof of Claim 5.4

1.1 Basic facts.

In order to prove Claim 5.4 we will need several auxiliary results and definitions. We begin with the notion of complexes. Henceforth, the rank of a (not necessarily uniform) hypergraph P is \(\max _{e \in P} |e|\). For \(r \ge 2\) we denote \(P^{(r)} = \left\{ e \in P \,\big \vert \, |e|=r\right\} \) and \(P^{(1)}=V(P)\).

Definition A.1

(Complex). A k-complex\((k \ge 2)\) is a k-partite hypergraph P of rank \(k-1\) where \(P^{(r)} \subseteq \mathcal {K}(P^{(r-1)})\) for every \(2 \le r \le k-1\).

Definition A.2

(f-regular complex). Let \(f :[0,1]\rightarrow [0,1]\). A k-complex P on vertex classes \((V_1,\ldots ,V_k)\) is \((f,d_2,\ldots ,d_{k-1})\)-regular, or simply f-regular, if for every \(2 \le r \le k-1\) and every r vertex classes \(V_{i_1},\ldots ,V_{i_r}\) we have that \(P^{(r)}[V_{i_1},\ldots ,V_{i_r}]\) is \((\epsilon ,d_r)\)-regular in \(P^{(r-1)}[V_{i_1},\ldots ,V_{i_r}]\), where \(\epsilon =f(d_0)\) and \(d_0=\min \{d_2,\ldots ,d_{k-1}\}\).

Note that by using the notion of complexes one can equivalently define an f-equitable partition (recall Definition 5.3) as follows; an \((r,a_1,\ldots ,a_r)\)-partition \(\mathcal {P}\) is f-equitable if \(\mathcal {P}^{(1)}\) is equitable and, if \(r \ge 2\), every r-complex of \(\mathcal {P}\) is \((f,1/a_2,\ldots ,1/a_r)\)-regular.

We now state the dense counting lemma of [RS07b] specialized to complexes. We henceforth fix the following notation for \(k \ge 3\), \(\gamma > 0\);

$$\begin{aligned} F_{k,\gamma }(x) := \frac{\gamma ^3}{12}\left( \frac{x}{2}\right) ^{2^{k+1}} . \end{aligned}$$
(60)

The statement we use below follows from combining Theorem 10 and Corollary 14 in [RS07b], and generalized to the case where the vertex classes are not necessarily of the same size. For a k-polyad F and an edge \(e \in F\), we denote the set of k-cliques in F containing e by \(\mathcal {K}(F,e)=\{e' \in \mathcal {K}(F) \,\vert \, e \subseteq e'\}\). For a k-complex P we abbreviate \(\mathcal {K}(P):=\mathcal {K}(P^{(k-1)})\).

Fact 1

(Dense counting lemma for k-complexes). Let \(\gamma > 0\) and let P be a k-complex \((k \ge 3)\) that is \((F_{k,\gamma },d_2,\ldots ,d_{k-1})\)-regular with \(n_i \ge n_0(\gamma ,d_2,\ldots ,d_{k-1})\) vertices in the \(i\text {-th}\) vertex class. Then

$$\begin{aligned} |\mathcal {K}(P)| = (1 \pm \gamma )\prod _{i=2}^{k-1} d_i^{\left( {\begin{array}{c}k\\ i\end{array}}\right) } \cdot \prod _{i=1}^k n_i . \end{aligned}$$

Moreover,Footnote 16 let \(P^{(k-1)}=(P_1,\ldots ,P_k)\). We have for all edges \(e \in P_k\) but at most \(\gamma |P_k|\) thatFootnote 17

$$\begin{aligned} |\mathcal {K}(P,e)| = (1 \pm \gamma )\prod _{i=2}^{k-1} d_i^{\left( {\begin{array}{c}k-1\\ i-1\end{array}}\right) } \cdot n_{k} . \end{aligned}$$

We will also need a slicing lemma for complexes.

Lemma A.3

(Slicing lemma for complexes). Let P be a k-complex \((k\ge 3)\) on vertex classes \((V_1,\ldots ,V_k)\) and let \(V_k' \subseteq V_k\) with \(|V_k'| \ge \delta |V_k|\). If P is \((f,\,d_2,\ldots ,d_{k-1})\)-regular with \(f(x) \le \frac{\delta }{2} F_{k-1,\frac{1}{4}}(x)\) and \(|V(P)| \ge n_0(d_2,\ldots ,d_{k-1})\) then the induced k-complex \(Q=P[V_1,\ldots ,V_{k-1},V_k']\) is \((f^*,d_2,\ldots ,d_{k-1})\)-regular with \(f^*=\frac{2}{\delta } \cdot f\).

For the proof we will need the notation \(P^{(\le i)} = \{e \in P \,\vert \, |e| \le i\}\) where P is any hypergraph.

Proof

We proceed by induction on k. We begin with the induction basis \(k=3\). Let \(P=(P_1,P_2,P_3)\) be an \((f,d_2)\)-regular 3-complex on vertex classes \((V_1,V_2,V_3)\), meaning that each bipartite graph \(P_i\) (which is obtained from P by removing \(V_i\) and its adjacent edges) is \((\epsilon ,d)\)-regular with \(d=d_2\) and \(\epsilon =f(d)\). Put \(Q=(Q_1,Q_2,Q_3)\). We will show that the bipartite graphs \(Q_1=P_1[V_2,V_3']\) and \(Q_2=P_2[V_1,V_3']\) are each \((\epsilon /\delta ,\,d)\)-regular. Since \(f(x)/\delta \le f^*(x)\), and since \(Q_3=P_3\) is \((\epsilon ,d)\)-regular by assumption, this would imply that Q is \((f^*,d_2)\)-regular, as needed. To prove that \(Q_1\) is \((\epsilon /\delta ,d)\)-regular, let \(S \subseteq V_2 \cup V_3'\) with \(|\mathcal {K}(S)| \ge (\epsilon /\delta )|V_2||V_3'|\). Then \(|\mathcal {K}(S)| \ge \epsilon |V_2||V_3|\), hence \(d_{Q_1}(S)=d_{P_1}(S) = d \pm \epsilon \), as desired. Similarly, to prove that \(Q_{2}\) is \((\epsilon /\delta ,d)\)-regular, let \(S \subseteq V_1 \cup V_3'\) with \(|\mathcal {K}(S)| \ge (\epsilon /\delta )|V_1||V_3'|\). Then \(|\mathcal {K}(S)| \ge \epsilon |V_1||V_3|\), hence \(d_{Q_2}(S)=d_{P_2}(S) = d \pm \epsilon \). This proves the induction basis.

It remains to prove the induction step. Let P be a \((k+1)\)-complex on vertex classes \((V_1,\ldots ,V_{k+1})\) and let \(V_{k+1}^{\prime } \subseteq V_{k+1}\) with \(|V_{k+1}^{\prime }| \ge \delta |V_{k+1}|\), and suppose P is \((f,d_2,\ldots ,d_k)\)-regular with

$$\begin{aligned} f(x) \le \frac{\delta }{2} F_{k,\frac{1}{4}}(x) . \end{aligned}$$
(61)

We need to show that the induced \((k+1)\)-complex \(Q=P[V_1,\ldots ,V_k,V_{k+1}^{\prime }]\) is \((f^*,d_2,\ldots ,d_k)\)-regular. Put \(d_0 = \min \{d_2,\ldots ,d_{k-1}\}\), \(P^{(k)}=(P_1,\ldots ,P_{k+1})\) and \(Q^{(k)}=(Q_1,\ldots ,Q_{k+1})\). Let \(i \in [k+1]\), and observe that the regularity assumption on P translates to the following assumptions on \(P_i\):

  1. (i)

    the k-complex \(P_i^{(\le k-1)}\) is \((f,d_2,\ldots ,d_{k-1})\)-regular,

  2. (ii)

    the k-partite k-graph \(P^{(k)}_i\) is \((f(d_0),\,d_k)\)-regular in \(P^{(k-1)}_i\).

To prove that Q is \((f^*,d_2,\ldots ,d_k)\)-regular we need to show that \(Q_i\) satisfies the following conditions:

  1. (i)

    the k-complex \(Q_i^{(\le k-1)}\) is \((f^*,d_2,\ldots ,d_{k-1})\)-regular,

  2. (ii)

    the k-partite k-graph \(Q^{(k)}_i\) is \((f^*(d_0),\,d_k)\)-regular in \(Q^{(k-1)}_i\).

We henceforth assume \(i \ne k+1\), since otherwise \(Q_i=P_i\) and so the above conditions follow from the above assumptions together with the fact that \(f(x) \le f^*(x)\).

Apply the induction hypothesis with the k-complex \(P_i^{(\le k-1)}\) and \(V_{k+1}^{\prime }\), using assumption (i), the fact that \(f(x) \le \frac{\delta }{2}F_{k-1,\frac{1}{4}}(x)\) by (61) and the statement’s assumption on |V(P)|. It follows that the k-complex \(Q_i^{(\le k-1)}=P_i^{(\le k-1)}[V_1,\ldots ,V_{i-1},V_{i+1},\ldots ,V_k,V_{k+1}^{\prime }]\) is \((f^*,d_2,\ldots ,d_k)\)-regular, thus proving condition (i).

Apply Fact 1 (dense counting lemma) with \(\gamma =1/2\) and the k-complex \(P_i^{(\le k-1)}\), using assumption (i), the fact that \(f(x) \le F_{k,\frac{1}{2}}(x)\) by (61) and the statement’s assumption on |V(P)|, to deduce that

$$\begin{aligned} |\mathcal {K}(P_i^{(k-1)})| \le \frac{3}{2}\prod _{j=2}^{k-1} d_j^{\left( {\begin{array}{c}k\\ j\end{array}}\right) } \cdot \prod _{\begin{array}{c} 1 \le j \le k+1:\\ j \ne i \end{array}} |V_j| . \end{aligned}$$

On the other hand, applying Fact 1 with \(\gamma =1/4\) and the k-complex \(Q_i^{(\le k-1)}\), using condition (i), the fact that \(f^*(x) = \frac{2}{\delta }f(x) \le F_{k,\frac{1}{4}}(x)\) by (61) and the statement’s assumption on |V(P)|, implies that

$$\begin{aligned} |\mathcal {K}(Q_i^{(k-1)})| \ge \frac{3}{4}\prod _{j=2}^{k-1} d_j^{\left( {\begin{array}{c}k\\ j\end{array}}\right) } \cdot \prod _{\begin{array}{c} 1 \le j \le k:\\ j \ne i \end{array}} |V_j| \cdot \delta |V_{k+1}| \ge \frac{\delta }{2}|\mathcal {K}(P_i^{(k-1)})| . \end{aligned}$$
(62)

We now prove condition (ii). Let \(S \subseteq Q_i^{(k-1)}\) satisfy \(|\mathcal {K}(S)| \ge f^*(d_0)|\mathcal {K}(Q_i^{(k-1)})|\). Then \(|\mathcal {K}(S)| \ge f(d_0)|\mathcal {K}(P_i^{(k-1)})|\) by (62). Therefore \(d_{Q_i^{(k)}}(S)=d_{P_i^{(k)}}(S) = d_k \pm f(d_0)\), where the last equality uses assumption (ii). This proves condition (ii), thus completing the induction step and the proof. \(\square \)

1.2 Proof of Claim 5.4.

Proof

Put \(G=G_H^k\), \(\delta ^{\prime }=2\sqrt{\delta }\), and let \(E \in E_k(\mathcal {P})\) and \(V \in V_k(\mathcal {P})\).

Note that E is a \((k-1)\)-partite \((k-1)\)-graph, and let \((V_1,\ldots ,V_{k-1})\) denote its vertex classes. Thus, \(V_j \subseteq \mathbf {V}^j\) for every \(1 \le j \le k-1\), and \(V \subseteq \mathbf {V}^k\).

Moreover, let \(E^{\prime } \subseteq E\), \(V^{\prime } \subseteq V\) with \(|E^{\prime }| \ge \delta ^{\prime }|E|\), \(|V^{\prime }| \ge \delta ^{\prime }|V|\).

To complete the proof our goal is to show that \(d_{G}(E^{\prime },V^{\prime }) \ge \frac{1}{2} d_{G}(E,V)\) (recall Definition 2.2).

Consider the following k-partite k-graph and subgraph thereof:

$$\begin{aligned} K= & {} \{ (v_1,\ldots ,v_k) \,\vert \, (v_1,\ldots ,v_{k-1}) \in E \text { and } v_k \in V \} = E \circ V ,\\ K^{\prime }= & {} \{ (v_1,\ldots ,v_k) \,\vert \, (v_1,\ldots ,v_{k-1}) \in E^{\prime } \text { and } v_k \in V^{\prime } \} = E^{\prime } \circ V^{\prime } . \end{aligned}$$

We claim that

$$\begin{aligned} d_{G}(E,V) = \frac{|H \cap K|}{|K|} \quad \text {and}\quad d_{G}(E^{\prime },V^{\prime }) = \frac{|H \cap K^{\prime }|}{|K^{\prime }|} . \end{aligned}$$
(63)

Proving (63) would mean that to complete the proof it suffices to show that

$$\begin{aligned} \frac{|H \cap K^{\prime }|}{|K^{\prime }|} \ge \frac{1}{2} \frac{|H \cap K|}{|K|} . \end{aligned}$$
(64)

To prove (63) first note that

$$\begin{aligned} |K| = |E||V| \quad \text {and}\quad |K^{\prime }|=|E^{\prime }||V^{\prime }| . \end{aligned}$$
(65)

Furthermore,

$$\begin{aligned} e_G(E,V)&= \left| \left\{ \, ((v_1,\ldots ,v_{k-1}),v_k) \in G \,\big \vert \, (v_1,\ldots ,v_{k-1}) \in E,\, v_k \in V \, \right\} \right| \\&= \left| \left\{ \, (v_1,\ldots ,v_{k-1},v_k) \in H \,\big \vert \, (v_1,\ldots ,v_{k-1}) \in E,\, v_k \in V \, \right\} \right| = |H \cap K| , \end{aligned}$$

and similarly, \(e_G(E^{\prime },V^{\prime })=|H \cap K^{\prime }|\). Therefore, using (65), we indeed have

$$\begin{aligned} d_G(E,V) = \frac{e_G(E,V)}{|E||V|} = \frac{|H \cap K|}{|K|} \quad \text {and}\quad d_G(E^{\prime },V^{\prime }) = \frac{e_G(E^{\prime },V^{\prime })}{|E^{\prime }||V^{\prime }|} = \frac{|H \cap K^{\prime }|}{|K^{\prime }|} . \end{aligned}$$

Having completed the proof of (63), it remains to prove (64). By Claim 3.8 there is a set of k-polyads \(\{P_i\}_i\) of \(\mathcal {P}\) on \((V_1,\ldots ,V_{k-1},V)\) such that

$$\begin{aligned} K = \bigcup _i \mathcal {K}(P_i) \,\text { is a partition, with }\, P_i = (P_{i,1},\ldots ,P_{i,k-1},E) . \end{aligned}$$
(66)

For each k-polyad \(P_i=(P_{i,1},\ldots ,P_{i,k-1},E)\), let \(P_i^{\prime }\) be the induced k-polyad \(P_i^{\prime } = P_i[V_1,\ldots ,V_{k-1},V^{\prime }]\). Write \(P_i^{\prime }=(P^{\prime }_{i,1},\ldots ,P^{\prime }_{i,k},E)\), and let \(Q_i\) be the k-polyad \(Q_i=(P^{\prime }_{i,1},\ldots ,P^{\prime }_{i,k-1},E^{\prime })\). Note that \(Q_i\) satisfies \(\mathcal {K}(Q_i) = \mathcal {K}(P_i) \cap K^{\prime }\). It therefore follows from (66) that

$$\begin{aligned} K^{\prime } = \bigcup _i (\mathcal {K}(P_i) \cap K^{\prime }) = \bigcup _i \mathcal {K}(Q_i) \,\text { is a partition.} \end{aligned}$$
(67)

Suppose \(\mathcal {P}\) is a \((k-1,a_1,a_2,\ldots ,a_{k-1})\)-partition, and denote \(d_j = 1/a_j\) and

$$\begin{aligned} d = \prod _{j=2}^{k-1} d_j^{\left( {\begin{array}{c}k-1\\ j-1\end{array}}\right) } . \end{aligned}$$

Put \(\gamma = \frac{1}{8}\delta ^{\prime }\) (\(\le \frac{1}{8}\), as otherwise there is nothing to prove). We will next apply the dense counting lemma (Fact 1) to prove the estimates:

$$\begin{aligned} |\mathcal {K}(P_i)| \le (1+\gamma )d|K| \end{aligned}$$
(68)

and

$$\begin{aligned} |\mathcal {K}(Q_i)| \ge \big (1-\gamma )d|K^{\prime }| . \end{aligned}$$
(69)

Note that proving these estimates would in particular imply the bound

$$\begin{aligned} |\mathcal {K}(Q_i)| \ge \delta |\mathcal {K}(P_i)| ; \end{aligned}$$
(70)

indeed, from the assumptions \(|E^{\prime }| \ge \delta ^{\prime }|E|\), \(|V^{\prime }| \ge \delta ^{\prime }|V|\) and (65) we have that \(|K^{\prime }| \ge (\delta ^{\prime })^2|K|\), hence we deduce from (68) and (69) the lower bound

$$\begin{aligned} \frac{|\mathcal {K}(Q_i)|}{|\mathcal {K}(P_i)|} \ge \frac{1-\gamma }{1+\gamma }(\delta ^{\prime })^2 \ge \frac{3}{4} \cdot (2\sqrt{\delta })^2 \ge \delta , \end{aligned}$$

where we used the inequality

$$\begin{aligned} \frac{1-\gamma }{1+\gamma } \ge 1-2\gamma \ge \frac{3}{4} . \end{aligned}$$
(71)

In order to prove (68) and (69) we first need to introduce some notation.

Put \(m=n/a_1\) where \(n=|V(H)|\) is the size of the vertex set, and put

$$\begin{aligned} \gamma ^{\prime } = \frac{1}{2}\gamma \delta ^{\prime }d \quad \left( =\frac{1}{4}\delta d\right) , \quad d_0 = \min \{d_2,\ldots ,d_{k-1}\} . \end{aligned}$$

Note that \(d \ge d_0^{2^k}\). Using the statement’s assumption on f we have (recall (60))

$$\begin{aligned} f(d_0) = \delta ^4\left( \frac{d_0}{2}\right) ^{2^{k+3}} \le \frac{\delta }{2^{6}} \cdot \left( \frac{1}{4}\delta d_0^{2^k}\right) ^3 \left( \frac{d_0}{2}\right) ^{2^{k+1}} \le \frac{\delta }{2}\cdot \frac{\gamma ^{\prime 3}}{12}\left( \frac{d_0}{2}\right) ^{2^{k+1}} = \frac{\delta }{2}F_{k,\gamma ^{\prime }}(d_0).\nonumber \\ \end{aligned}$$
(72)

In particular,

$$\begin{aligned} f(d_0) \le \gamma ^{\prime } d_0 \le \gamma ^{\prime } d_{k-1} . \end{aligned}$$
(73)

Note that if P is an \(\ell \)-polyad of \(\mathcal {P}\), for any \(2 \le \ell \le k\), then, since \(\mathcal {P}\) is f-equitable, the unique \(\ell \)-complex of \(\mathcal {P}\) containing P is \((f,d_2,\ldots ,d_{\ell -1})\)-equitable. Applying Fact 1 (dense counting lemma) with \(\gamma ^{\prime }\) implies, using the fact that \(f(x) \le F_{k,\gamma ^{\prime }}(x) \le F_{\ell ,\gamma ^{\prime }}(x)\) by (72) and the statement’s assumption on n, that

$$\begin{aligned} |\mathcal {K}(P)| = (1 \pm \gamma ^{\prime })\prod _{j=2}^{\ell -1} d_j^{\left( {\begin{array}{c}\ell \\ j\end{array}}\right) } \cdot m^\ell . \end{aligned}$$
(74)

Let \(P_E\) be the unique \((k-1)\)-polyad of \(\mathcal {P}\) such that \(E \subseteq K(P_E)\).

Then \(|E|=d_E(P_E)|\mathcal {K}(P_E)|\), and since \(\mathcal {P}\) is f-equitable, E is \((d_{k-1},f(d_0))\)-regular in \(P_E\). In particular, \(|E| \ge (d_{k-1}-f(d_0))|\mathcal {K}(P_E)|\).

By (74),

$$\begin{aligned}|\mathcal {K}(P_E)| \ge (1-\gamma ^{\prime })\prod _{j=2}^{k-2} d_j^{\left( {\begin{array}{c}k-1\\ j\end{array}}\right) } \cdot m^{k-1} .\end{aligned}$$

Thus,

$$\begin{aligned} |E| \ge (d_{k-1}-f(d_0))|\mathcal {K}(P_E)| \ge (1-\gamma ^{\prime })d_{k-1}|\mathcal {K}(P_E)| \ge (1-2\gamma ^{\prime })\prod _{j=2}^{k-1} d_j^{\left( {\begin{array}{c}k-1\\ j\end{array}}\right) } \cdot m^{k-1} ,\nonumber \\ \end{aligned}$$
(75)

where the second inequality uses (73). Furthermore, for every \(P_i\) as above we have (recall \(P_i\) is a k-polyad of \(\mathcal {P}\)), again by (74), that

$$\begin{aligned} |\mathcal {K}(P_i)|\le & {} (1+\gamma ^{\prime })\prod _{j=2}^{k-1} d_j^{\left( {\begin{array}{c}k\\ j\end{array}}\right) } \cdot m^k = (1+\gamma ^{\prime })d\prod _{j=2}^{k-1} d_j^{\left( {\begin{array}{c}k-1\\ j\end{array}}\right) } \cdot m^k \\\le & {} \frac{1+\gamma ^{\prime }}{1-2\gamma ^{\prime }}d|E||V| \le (1+4\gamma ^{\prime })d|K| , \end{aligned}$$

where the penultimate inequality uses (75), and the last inequality uses (65) and the fact that \(\gamma ^{\prime } \le \gamma \le \frac{1}{8}\). This proves (68).

Next we prove (69). Let \(\overline{P_i}\) be the unique k-complex of \(\mathcal {P}\) containing the k-polyad \(P_i\), and let \(\overline{P_i}^{\prime }\) be the induced k-complex \(\overline{P_i}^{\prime }=\overline{P_i}[V_1,\ldots ,V_{k-1},V^{\prime }]\). Apply Lemma A.3 (slicing lemma) on \(\overline{P_i}\), using the fact that \(|V^{\prime }| \ge \delta ^{\prime }|V|\) and \(f(x) \le \frac{\delta }{2}F_{k-1,\frac{1}{4}}\) by (72), to deduce that \(\overline{P_i}^{\prime }\) is \((\frac{2}{\delta }f,\, d_2,\ldots ,d_{k-1})\)-regular. Let the k-complex \(\overline{Q_i}\) be obtained from the k-complex \(\overline{P_i}^{\prime }\) by replacing E\((=P[V_1,\ldots ,V_{k-1}])\) with \(E^{\prime }\), and note that the \((k-1)\)-uniform hypergraph \(\overline{Q_i}^{(k-1)}\) is precisely the k-polyad \(Q_i\). Apply Fact 1 (dense counting lemma, the “moreover” part) with \(\gamma ^{\prime }\) on \(\overline{P_i}^{\prime }\), using the fact that \(\frac{2}{\delta }f(x) \le F_{k,\gamma ^{\prime }}(x)\) by (72) and the statement’s assumption on n, to deduce that

$$\begin{aligned} |\mathcal {K}(Q_i)|\ge & {} |E^{\prime }| \cdot (1-\gamma ^{\prime })d|V^{\prime }| - \gamma ^{\prime }|E|\cdot |V^{\prime }| \ge \left( 1-\gamma ^{\prime } - \frac{1}{\delta ^{\prime } d}\gamma ^{\prime }\right) d|E^{\prime }||V^{\prime }| \\\ge & {} \big (1-\gamma )d|K^{\prime }| , \end{aligned}$$

where the second inequality uses the assumption that \(|E^{\prime }|\ge \delta ^{\prime }|E|\) and the third inequality uses (65). This proves (69).

Finally, recall that our goal is to prove (64). We have

$$\begin{aligned} |H \cap K|&= \sum _i |H \cap \mathcal {K}(P_i)| = \sum _i d_H(P_i) \cdot |\mathcal {K}(P_i)| \\&\le (1+\gamma )|K| \cdot d\sum _i d_H(P_i) , \end{aligned}$$

where the first equality uses (66) and the inequality is by (68). Put \(d^{\prime }=d\sum _i d_H(P_i)\). Then

$$\begin{aligned} \frac{|H \cap K|}{|K|} \le (1 + \gamma )d^{\prime } . \end{aligned}$$
(76)

Observe that for every i, the statement’s assumption on \(\mathcal {P}\) implies, together with (70), that

$$\begin{aligned} d_H(Q_i) \ge \frac{2}{3} d_H(P_i) . \end{aligned}$$
(77)

We have

$$\begin{aligned} |H \cap K^{\prime }|&= \sum _i |H \cap \mathcal {K}(Q_i)| = \sum _i d_H(Q_i) \cdot |\mathcal {K}(Q_i)| \\&\ge \sum _i \frac{2}{3} d_H(P_i) \cdot |\mathcal {K}(Q_i)| \ge \frac{2}{3}(1-\gamma )|K^{\prime }| \cdot d\sum _i d_H(P_i) , \end{aligned}$$

where the first equality uses (67), the first inequality uses (77) and the second inequality uses (69). This means that

$$\begin{aligned} \frac{|H \cap K^{\prime }|}{|K^{\prime }|} \ge \frac{2}{3}(1-\gamma )d^{\prime } \ge \frac{2}{3}\cdot \frac{1-\gamma }{1+\gamma }\frac{|H \cap K|}{|K|} \ge \frac{1}{2} \frac{|H \cap K|}{|K|} , \end{aligned}$$

where the second inequality uses (76) and the third inequality uses (71). We have thus proved (64) and are therefore done. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moshkovitz, G., Shapira, A. A Tight Bound for Hyperaph Regularity. Geom. Funct. Anal. 29, 1531–1578 (2019). https://doi.org/10.1007/s00039-019-00512-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-019-00512-5

Navigation