Skip to main content
Log in

Lagrange Spectra in Teichmüller Dynamics via Renormalization

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We introduce Lagrange Spectra of closed-invariant loci for the action of SL(2, \({\mathbb{R}}\)) on the moduli space of translation surfaces, generalizing the classical Lagrange Spectrum, and we analyze them with renormalization techniques. A formula for the values in such spectra is established in terms of the Rauzy–Veech induction and it is used to show that any invariant locus has closed Lagrange spectrum and values corresponding to pseudo-Anosov elements are dense. Moreover we show that Lagrange spectra of arithmetic Teichmüller discs contain an Hall’s ray, giving an explicit bound for it via a second formula which uses the classical continued fraction algorithm. In addition, we show the equivalence of several definitions of bounded Teichmüller geodesics and bounded type interval exchange transformations and we prove quantitative estimates on excursions to the boundary of moduli space in terms of norms of positive matrices in the Rauzy–Veech induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avila A., Gouezel S., Yoccoz J.-C.: Exponential mixing for the Teichmüller flow. Publications mathématiques de l’IHES, 104, 143–211 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Artigiani, L. Marchese and C. Ulcigrai. The Lagrange Spectrum of a Veech surface has a Hall ray (2014). arXiv:1409.7023.

  3. Birkhoff G.: Extensions of Jentzsth’s theorem. Transactions of the American Mathematical Society, 85, 219–227 (1957)

    MATH  MathSciNet  Google Scholar 

  4. Boshernitzan M.: A condition for minimal interval exchange maps to be uniquely ergodic.. Duke Mathematical Journal, 52, 723–752 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. T.W. Cusick and M.E. Flahive. The Markoff and Lagrange spectra. Mathematicas Surveys and Monographs, Vol. 30 (1989).

  6. A. Eskin and M. Mirzakhani. Invariant and stationary measures for the \({\rm SL(2,\mathbb{R}})\) action on moduli space. (2013). arXiv:1302.3320.

  7. A. Eskin, K. Rafi, and M. Mirzakhani. Counting closed geodesics in strata. (2012). arXiv:1206.5574.

  8. S. Ferenczi. Dynamical Generalizations of the Lagrange Spectrum (2010). arXiv:1108.3628.

  9. Hall M.: On the sum and products of continued fractions. Annals of Mathematics, 48, 966–993 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  10. Haas A., Series C.: The Hurwitz constant and Diophantine approximation on Hecke groups. Journal of London Mathematical Society, 2(34), 219–334 (1986)

    Article  MathSciNet  Google Scholar 

  11. Hamenstädt U.: Dynamics of the Teichmueller flow on compact invariant sets. Journal of Modern Dynamics, 4, 393–418 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hersonsky S., Paulin F.: On the almost sure spiraling of geodesics in negatively curved manifolds. Journal of Differential Geometry, 2(85), 271–314 (2010)

    MathSciNet  Google Scholar 

  13. Hubert P., Lelièvre S.: Prime arithmetic Teichmüller disc in \({\mathcal{H}(2)}\). Israel Journal of Mathematics, 151, 281–321 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. D.H. Kim and S. Marmi. Bounded type interval exchange maps (2013). arXiv:1307.3511.

  15. A.Y. Khinchin. Continued fractions. P. Noordhoff, Groningen (1963) (English translation).

  16. Kleinboch D., Weiss B.: Bounded geodesics in moduli space. International Mathematical Research Notices, 30, 1551–1560 (2004)

    Article  Google Scholar 

  17. Marchese L.: The Khinchin theorem for interval exchange transformations. Journal of Modern Dynamics, 1(5), 123–183 (2011)

    Article  MathSciNet  Google Scholar 

  18. Marmi S., Moussa P., Yoccoz J.-C.: The cohomological equation for Roth-type interval exchange maps. Journal of American Mathematical Society, 4(18), 823–872 (2005)

    Article  MathSciNet  Google Scholar 

  19. Maucourant F.: “Sur les spectres de Lagrange et de Markoff des corps imaginaires quadratiques” (French). Ergodic Theory and Dynamical Systems, 1(23), 193–205 (2003)

    MathSciNet  Google Scholar 

  20. Masur H.: Interval exchange transformation and measured foliations. Annals of Mathematics, 115, 169–200 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Moreira.“Introduçao à à teoria dos números” (Portuguese) [Introduction to number theory] Monografías del Instituto de Matemática y Ciencias Afines, Vol. 24. Instituto de Matemática y Ciencias Afines, IMCA, Lima; Pontificia Universidad Católica del Perú, Lima (2002). ISBN: 9972-899-01-2,11-01

  22. G. Moreira and S. Romaña. On the Lagrange and Markov dynamical spectra (2013). arXiv:1310.3903.

  23. J. Parkkonen and F. Paulin. On the closedness of approximation spectra. Journal de Théorie des Nombres de Bordeaux, (3)21 (2009), 701–710.

  24. Parkkonen J., Paulin F.: Prescribing the behaviour of geodesics in negative curvature. Geometry and Topology, 1(14), 277–392 (2010)

    Article  MathSciNet  Google Scholar 

  25. Parkkonen J., Paulin F.: Spiraling spectra of geodesic lines in negatively curved manifolds. Mathematische Zeitschrift, 1(−2268), 101–142 (2011)

    Article  MathSciNet  Google Scholar 

  26. Rauzy G.: Echanges d’intervalles et transformations induites (French). Acta Arithmetica, 4(34), 315–328 (1979)

    MathSciNet  Google Scholar 

  27. Schmidt T.A., Sheingorn M.: Riemann surfaces have Hall rays at each cusp. Illinois Journal of Mathematics, 3(41), 378–397 (1997)

    MathSciNet  Google Scholar 

  28. Series C.: The geometry of Markoff numbers. The Mathematical Intelligencer, 7, 20–29 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  29. Series C.: The modular surface and continued fractions. Journal of the London Mathematical Society, 31(69–80), 31 69–80 (1985)

    MathSciNet  Google Scholar 

  30. C. Series. Geometrical methods of symbolic coding. In: T. Bedford, M. Keane, and C. Series (eds.) Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces. Oxford University Press, New York (1991), pp. 121–151.

  31. Smillie J., Weiss B.: Characterizations of lattice surfaces. Inventiones Mathematicae, 3(180), 535–557 (2010)

    Article  MathSciNet  Google Scholar 

  32. Veech W.: Gauss measures for transformations on the space of interval exchange maps. Annals of Mathematics, 115, 201–242 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  33. W. Veech. Boshernitzan’s criterion for unique ergodicity of an interval exchange transformation. Ergodic Theory and Dynamical Systems, (1)7 (1987), 27–48

  34. W. Veech. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. Inventiones Mathematicae, (3)97 (1989), 553–583.

  35. Y. Vorobets. Planar structures and billiards in rational polygons: the Veech alternative. (Russian).Uspekhi Mat. Nauk, 51(5) (1996), 3–42 (translation in Russian Mathematical Surveys, (5)51 (1996), 779–817).

  36. Vulakh L.: The Markov spectra for triangle groups. Journal of Number Theory, 1(67), 11–28 (1997)

    Article  MathSciNet  Google Scholar 

  37. Vulakh L.: The Markov spectra for Fuchsian groups. Transactions of the American Mathematical Society, 352, 4067–4094 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Vulakh L.: Diophantine approximation in R n. Transactions of the American Mathematical Society, 2(347), 573–585 (1995)

    MathSciNet  Google Scholar 

  39. Vulakh L.: Farey polytopes and continued fractions associated with discrete hyperbolic groups. Transactions of the American Mathematical Society, 351, 2295–2323 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  40. Vulakh L.: Diophantine approximation on Bianchi groups. Journal of Number Theory, 1(54), 73–80 (1995)

    Article  MathSciNet  Google Scholar 

  41. A. Wright. The field of definition of affine invariant submanifolds of the moduli space of abelian differentials (2012). arXiv:1210.4806.

  42. J.-C. Yoccoz. Echanges d’intervalles. Cours Collège de France (2005).

  43. Zorich A.: Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents. Annales de l’Institut Fourier, 2(46), 325–370 (1996)

    Article  MathSciNet  Google Scholar 

  44. A. Zorich. Flat surfaces. In: P. Cartier, B. Julia, P. Moussa and P. Vanhove (eds.) Frontiers in Number Theory, Physics and Geometry, Vol 1. Springer, Berlin (2006), pp. 403–437.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinna Ulcigrai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubert, P., Marchese, L. & Ulcigrai, C. Lagrange Spectra in Teichmüller Dynamics via Renormalization. Geom. Funct. Anal. 25, 180–255 (2015). https://doi.org/10.1007/s00039-015-0321-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-015-0321-z

Keywords and phrases

Mathematics Subject Classification

Navigation