Skip to main content
Log in

Structured Measurement Matrices Based on Deterministic Fourier Matrices and Gram Matrices

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The measurement matrices play a crucial role in compressed sensing, directly impacting the performance of signal sampling and reconstruction. As one of the primary construction methods for measurement matrices, designing structured measurement matrices is a challenging problem. In practical sampling, the measurement matrices often have strong coherence. Therefore, it is significant to design structured measurement matrices with superior reconstruction performance at low sampling, although the coherence is strong. In this paper, by introducing a special Gram matrix and merging it with the deterministic Fourier matrix, we construct a kind of measurement matrices with superior signal recovery performance under strong coherence. Furthermore, utilizing Katz’ character sum estimation allows us to establish an upper bound on the coherence of the constructed matrices. All experimental results demonstrate that the performance of the proposed matrices outperform that of Fourier matrices and Gaussian random matrices. Consequently, the proposed matrices hold significant application in sparse signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Adamczak, A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. Electron. J. Probab. 13(34), 1000–1034 (2008)

    MathSciNet  Google Scholar 

  2. A. Amini, F. Marvasti, Deterministic construction of binary, bipolar, and ternary compressed sensing matrices. IEEE Trans. Inf. Theory 57(4), 2360–2370 (2011)

    Article  MathSciNet  Google Scholar 

  3. W.U. Bajwa, J.D. Haupt, G.M. Raz, S.J. Wright, R.D. Nowak, Toeplitz-structured compressed sensing matrices, in 2007 IEEE/SP 14th Workshop on Statistical Signal Processing (Madison, 2007), pp. 294–298

  4. R. Baraniuk, M. Davenport, R. DeVore, M. Wakin, A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28, 253–263 (2008)

    Article  MathSciNet  Google Scholar 

  5. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  6. E.J. Candès, T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  7. S. Das, J.K. Mandal, A modified column block toeplitz matrix for compressed sensing. Signal Image Video Process. 17(6), 3083–3090 (2023)

    Article  Google Scholar 

  8. G. Davis, S. Mallat, M. Avellaneda, Adaptive greedy approximations. Constr. Approx. 13, 57–98 (1997)

    Article  MathSciNet  Google Scholar 

  9. R.A. DeVore, Deterministic constructions of compressed sensing matrices. J. Complexity 23(4–6), 918–925 (2007)

    Article  MathSciNet  Google Scholar 

  10. T.T. Do, T.D. Tran, L. Gan, Fast compressive sampling with structurally random matrices, in IEEE International Conference on Acoustics. Speech and Signal Processing (Las Vegas, 2008), pp. 3369–3372

  11. D.L. Donoho, X. Huo, Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)

    Article  MathSciNet  Google Scholar 

  12. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  13. A. Eftekhari, H.L. Yap, C.J. Rozell, M.B. Wakin, The restricted isometry property for random block diagonal matrices. Appl. Comput. Harmon. Anal. 38(1), 1–31 (2015)

    Article  MathSciNet  Google Scholar 

  14. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, New York, 2010)

    Book  Google Scholar 

  15. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Springer, New York, 2013)

    Book  Google Scholar 

  16. A.C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, M. Strauss, Near-optimal sparse Fourier representations via sampling, in Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing (Association for Computing Machinery, New York, 2002), pp. 152–161

  17. J. Haupt, L. Applebaum, R. Nowak, On the restricted isometry of deterministically subsampled Fourier matrices, in Annu. Conf. Inf. Sci. Syst., CISS, (Princeton, 2010), pp. 1–6

  18. N.M. Katz, An estimate for character sums. J. Am. Math. Soc. 2(2), 197–200 (1989)

    Article  MathSciNet  Google Scholar 

  19. S. Kunis, H. Rauhut, Random sampling of sparse trigonometric polynomials, ii. orthogonal matching pursuit versus basis pursuit. Found. Comut. Math. 8, 737–763 (2008)

    Article  MathSciNet  Google Scholar 

  20. S. Li, F. Gao, G. Ge, S. Zhang, Deterministic construction of compressed sensing matrices via algebraic curves. IEEE Trans. Inf. Theory 58(8), 5035–5041 (2012)

    Article  MathSciNet  Google Scholar 

  21. J.W. Ma, J. Xu, Y.Q. Bao, S.W. Yu, Compressive sensing and its application: from sparse to low-rank regularized optimization. Signal Process. 28(5), 609–623 (2012)

    Google Scholar 

  22. Y.V. Parkale, S.L. Nalbalwar, Application of compressed sensing for image compression based on optimized Toeplitz sensing matrices. EURASIP J. Adv. Signal Process. 2021, 1–30 (2021)

    Article  Google Scholar 

  23. F. Santosa, W.W. Symes, Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Stat. Comput. 7(4), 1307–1330 (1986)

    Article  MathSciNet  Google Scholar 

  24. D. Shanks, Class number, a theory of factorization, and genera, in Proc. Symp. Math. Soc., vol. 20, pp. 415–440 (1971)

  25. A.M. Tillmann, M.E. Pfetsch, The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing. IEEE Trans. Inf. Theory 60(2), 1248–1259 (2013)

    Article  MathSciNet  Google Scholar 

  26. J.A. Tropp, Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  27. Y. Tsaig, D.L. Donoho, Extensions of compressed sensing. Signal Process. 86(3), 549–571 (2006)

    Article  Google Scholar 

  28. J. Wang, S. Kwon, B. Shim, Generalized orthogonal matching pursuit. IEEE Trans. Signal Process. 60(12), 6202–6216 (2012)

    Article  MathSciNet  Google Scholar 

  29. L. Welch, Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inf. Theory 20(3), 397–399 (1974)

    Article  Google Scholar 

  30. G. Xu, Z. Xu, Compressed sensing matrices from Fourier matrices. IEEE Trans. Inf. Theory 61(1), 469–478 (2014)

    Article  MathSciNet  Google Scholar 

  31. Z. Xu, The performance of orthogonal multi-matching pursuit under RIP. J. Comput. Math. 33, 495–516 (2012)

    Article  Google Scholar 

  32. C. Yang, P. Pan, Q. Ding, Image encryption scheme based on mixed chaotic Bernoulli measurement matrix block compressive sensing. Entropy 24(2), 273 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants 12261002 and 11761003; the Natural Science Foundation of Ningxia Province under Grant 2020AAC03231; and, in part, by the 2023 Graduate Innovation Project of North Minzu University under Grants YCX23071

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Gao.

Ethics declarations

Conflict of interest

The authors declare that there is no Conflict of interest regarding the publication of this paper

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Gao, Y. Structured Measurement Matrices Based on Deterministic Fourier Matrices and Gram Matrices. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02692-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02692-4

Keywords

Navigation