Skip to main content
Log in

Direct Self-trajectory Determination Based on Array Sensing and Evolutionary Particle Filter

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The self-trajectory determination is an effective method to continuously track the target’s motion position. However, the traditional methods are relied on auxiliary parameters, which cause the problems of information loss and error accumulation. In order to handle these problems, we propose a direct self-trajectory determination algorithm based on evolutionary particle filter (EPF) for unmanned aerial vehicle (UAV) mounted with an antenna array. Firstly, the array sensing data are eigenvalue decomposed to obtain the observation function and the state transition function is constructed with the process control parameters. Then, particles are distributed randomly around the position of UAV and their weighted values are estimated using the likelihood function derived from the observation function. The resampling algorithm is adopted to select particles with larger values and the position of UAV is determined from these reserved particles. To overcome the decrease in particle diversity, the reserved particles get more dense after mutation and the new particle group for next moment is obtained with the state transition function. In this way, the self-trajectory is iteratively refined with EPF. Finally, the simulation test and the practical experiment based on UAV are conducted to verify that the proposed algorithm is more accurate and more stable when tracking real-time positions of UAV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article.

References

  1. W. Al-Masri, A. Wadi, M.F. Abdel-Hafez, H.A. Hashim, A.H. El-Hag, Partial discharge localization in power transformers using invariant extended kalman filter. IEEE Trans. Instrum. Meas. 72, 1–10 (2023). https://doi.org/10.1109/TIM.2023.3239642

    Article  Google Scholar 

  2. I. Askari, M.A. Haile, X. Tu, H. Fang, Implicit particle filtering via a bank of nonlinear kalman filters. Automatica 145, 110469 (2022). https://doi.org/10.1016/j.automatica.2022.110469

    Article  MathSciNet  Google Scholar 

  3. A. Buelta, A. Olivares, E. Staffetti, Iterative learning control for precise aircraft trajectory tracking in continuous climb and descent operations. IEEE Trans. Intell. Transp. Syst. 23(8), 10481–10491 (2022). https://doi.org/10.1109/TITS.2021.3094738

    Article  Google Scholar 

  4. Z. Cao, P. Li, J. Li, X. Zhang, Q. Wu, Direct self-position awareness based on array-sensing multiple source data fitting, in 2023 4th Information Communication Technologies Conference (ICTC) 213–217 (Nanjing, China, 2023). https://doi.org/10.1109/ICTC57116.2023.10154740

  5. Z. Cao, P. Li, W. Tang, J. Li, X. Zhang, Self-position determination based on array signal subspace fitting under multipath environments. Sensors 23, 9356 (2023). https://doi.org/10.3390/s23239356

    Article  Google Scholar 

  6. S. Chen, Q. Zhang, D. Lin, S. Wang, A class of nonlinear kalman filters under a generalized measurement model with false data injection attacks. IEEE Signal Process. Lett. 29, 1187–1191 (2022). https://doi.org/10.1109/LSP.2022.3172623

    Article  Google Scholar 

  7. Y. Chen, Z. Yan, X. Zhang, Rao-Blackwellized particle filter for asynchronously dependent noises. Int. J. Control Autom. Syst. 19, 2026–2037 (2021). https://doi.org/10.1007/s12555-019-0832-8

    Article  Google Scholar 

  8. H. Darvishi, M.A. Sebt, D. Ciuonzo, P. Salvo Rossi, Tracking a low-angle isolated target via an elevation-angle estimation algorithm based on extended kalman filter with an array antenna. Remote Sens. 13, 3938 (2021). https://doi.org/10.3390/rs13193938

    Article  Google Scholar 

  9. X. Fu, X. Song, Distributed maximum correntropy kalman filter with state equality constraints in a sensor network with packet drops. Signal Process. 213, 109218 (2023). https://doi.org/10.1016/j.sigpro.2023.109218

    Article  Google Scholar 

  10. M.V. Kulikova, G.Y. Kulikov, Estimation of market efficiency process within time-varying autoregressive models by extended Kalman filtering approach. Digital Signal Process. 128, 845–848 (2022). https://doi.org/10.1016/j.dsp.2022.103619

    Article  Google Scholar 

  11. C. Kuptametee, Z. Michalopoulou, N. Aunsri, A review of efficient applications of genetic algorithms to improve particle filtering optimization problems. Measurement 224, 113952 (2024). https://doi.org/10.1016/j.measurement.2023.113952

    Article  Google Scholar 

  12. J. Li, P. Li, P. Li, L. Tang, X. Zhang, Q. Wu, Self-position awareness based on cascade direct localization over multiple source data. IEEE Trans. Intell. Transp. Syst. (2022). https://doi.org/10.1109/TITS.2022.3170465

    Article  Google Scholar 

  13. S. Li, B. Duo, X. Yuan, Y.-C. Liang, M. Di Renzo, Reconfigurable intelligent surface assisted UAV communication: joint trajectory design and passive beamforming. IEEE Wirel. Commun. Lett. 9(5), 716–720 (2020). https://doi.org/10.1109/LWC.2020.2966705

    Article  Google Scholar 

  14. Y. Lin, L. Miao, Z. Zhou, An improved MCMC-based particle filter for GPS-aided SINS in-motion initial alignment. IEEE Trans. Instrum. Meas. 69(10), 7895–7905 (2020). https://doi.org/10.1109/TIM.2020.2986610

    Article  Google Scholar 

  15. H. Liu, Y. Chen, Y. Lin, Q. Xiao, A multiple sources localization method based on TDOA without association ambiguity for near and far mixed field sources. Circuits Syst. Signal Process. 40, 4018–4046 (2021). https://doi.org/10.1007/s00034-021-01661-5

    Article  Google Scholar 

  16. D. Meng, X. Wang, M. Huang, L. Wan, B. Zhang, Robust weighted subspace fitting for DOA estimation via block sparse recovery. IEEE Commun. Lett. 24(3), 563–567 (2020). https://doi.org/10.1109/LCOMM.2019.2958913

    Article  Google Scholar 

  17. F. Pang, X. Wen, A novel closed-form estimator for AOA target localization without prior knowledge of noise variances. Circuits Syst. Signal Process. 40, 3573–3591 (2021). https://doi.org/10.1007/s00034-020-01624-2

    Article  Google Scholar 

  18. H. Rezaei, R. Mahboobi Esfanjani, A. Akbari, M.H. Sedaaghi, Scalable event-triggered distributed extended Kalman filter for nonlinear systems subject to randomly delayed and lost measurements. Digit. Signal Process. 111, 102957 (2021). https://doi.org/10.1016/j.dsp.2020.102957

    Article  Google Scholar 

  19. M. Samir, S. Sharafeddine, C. Assi, T.M. Nguyen, A. Ghrayeb, Trajectory planning and resource allocation of multiple UAVs for data delivery in vehicular networks. IEEE Netw. Lett. 1(3), 107–110 (2019). https://doi.org/10.1109/LNET.2019.2917399

    Article  Google Scholar 

  20. H.-J. Shao, X.-P. Zhang, Z. Wang, Efficient closed-form algorithms for AOA based self-localization of sensor nodes using auxiliary variables. IEEE Trans. Signal Process. 62(10), 2580–2594 (2014). https://doi.org/10.1109/TSP.2014.2314064

    Article  MathSciNet  Google Scholar 

  21. T. Shao, Q. Luo, A sparse state kalman filter algorithm based on kalman gain. Circuits Syst. Signal Process. 42, 2305–2320 (2023). https://doi.org/10.1007/s00034-022-02215-z

    Article  Google Scholar 

  22. A. Sveier, O. Egeland, Dual quaternion particle filtering for pose estimation. IEEE Trans. Control Syst. Technol. 29(5), 2012–2025 (2021). https://doi.org/10.1109/TCST.2020.3026926

    Article  Google Scholar 

  23. Y. Tao, S.S.-T. Yau, Outlier-robust iterative extended kalman filtering. IEEE Signal Process. Lett. 30, 743–747 (2023). https://doi.org/10.1109/LSP.2023.3285118

    Article  Google Scholar 

  24. Z. Wang, K. Hao, Y. Sun, L. Xie, Q. Wan, A computationally efficient direct position determination algorithm based on OFDM system. IEEE Commun. Lett. 27(3), 841–845 (2023). https://doi.org/10.1109/LCOMM.2022.3231548

    Article  Google Scholar 

  25. W. Xiong, C. Schindelhauer, H.C. So, Z. Wang, Maximum correntropy criterion for robust TOA-based localization in NLOS environments. Circuits Syst. Signal Process. 40, 6325–6339 (2021). https://doi.org/10.1007/s00034-021-01800-y

    Article  Google Scholar 

  26. T. Zhang, C. Xu, M.-H. Yang, Learning multi-task correlation particle filters for visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 365–378 (2019). https://doi.org/10.1109/TPAMI.2018.2797062

    Article  Google Scholar 

  27. Z. Zhang, F. Wen, J. Shi, J. He, T.-K. Truong, 2D-DOA estimation for coherent signals via a polarized uniform rectangular array. IEEE Signal Process. Lett. 30, 893–897 (2023). https://doi.org/10.1109/LSP.2023.3296038

    Article  Google Scholar 

  28. H. Zheng, C. Zhou, Z. Shi, Y. Gu, Y.D. Zhang, Coarray tensor direction-of-arrival estimation. IEEE Trans. Signal Process. 71, 1128–1142 (2023). https://doi.org/10.1109/TSP.2023.3260559

    Article  MathSciNet  Google Scholar 

  29. Z. Zheng, Y. Huang, W.-Q. Wang, H.C. So, Augmented covariance matrix reconstruction for DOA estimation using difference coarray. IEEE Trans. Signal Process. 69, 5345–5358 (2021). https://doi.org/10.1109/TSP.2021.3113468

    Article  MathSciNet  Google Scholar 

  30. G. Zhong, H. Zhang, J. Zhou, J. Zhou, H. Liu, Short-term 4D trajectory prediction for UAV based on spatio-temporal trajectory clustering. IEEE Access 10, 93362–93380 (2022). https://doi.org/10.1109/ACCESS.2022.3203428

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Li.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Li, J., Li, P. et al. Direct Self-trajectory Determination Based on Array Sensing and Evolutionary Particle Filter. Circuits Syst Signal Process 43, 3679–3696 (2024). https://doi.org/10.1007/s00034-024-02619-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-024-02619-z

Keywords

Navigation