Skip to main content
Log in

Beamforming Techniques for MIMO-NOMA for 5G and Beyond 5G: Research Gaps and Future Directions

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Effective sharing of the communication channel among many users, or multiple access (MA) techniques, can play a vital role in meeting the diverse demands of low latency, high reliability, massive connectivity, better fairness, and high throughput. In this context, non-orthogonal multiple access with multiple antennas, also known as multiple-input, multiple-output NOMA (MIMO-NOMA), is a promising enabling technology for fifth-generation (5G) and beyond (5G) wireless networks. The proper design of beamforming systems is one of the major difficulties in developing MIMO-NOMA. There are various ways to design beamforming for MIMO-NOMA in the literature. However, there is not much work dedicated to the survey focusing only on beamforming design in MIMO-NOMA systems. This work presents a comprehensive overview of beamforming methods in MIMO-NOMA for 5G and B5G. These strategies are classified in detail and have varied attributes, benefits, and drawbacks. As a result, future research gaps are also highlighted. Moreover, a simulation study is presented as a case study on the impact of random beamforming in various scenarios of heterogeneous environments with small and macro-cells. For this purpose, users’ outage probability is simulated with various types of interference in the heterogeneous systems, including inter-cluster, cross-tier, and co-tier interferences. This analysis also helps to contrast the performance of small and macro-cells. Finally, future research directions are discussed for beamforming in MIMO-NOMA for 5G and B5G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

There are no data associated with this manuscript.

References

  1. A. Ahmed, Z. Elsaraf, F.A. Khan, Q.Z. Ahmed, Cooperative non-orthogonal multiple access for beyond 5G networks. IEEE Open J. Commun. Soc. 2, 990–999 (2021)

    Article  Google Scholar 

  2. W.A. Al-Hussaibi, F.H. Ali, Efficient user clustering, receive antenna selection, and power allocation algorithms for massive MIMO-NOMA systems. IEEE Access 7, 31865–31882 (2019)

    Article  Google Scholar 

  3. H.M. Al-Obiedollah, K. Cumanan, J. Thiyagalingam, A.G. Burr, Z. Ding, O.A. Dobre, Energy efficient beamforming design for miso non-orthogonal multiple access systems. IEEE Trans. Commun. 67(6), 4117–4131 (2019)

    Article  Google Scholar 

  4. H.M. Al-Obiedollah, K. Cumanan, J. Thiyagalingam, J. Tang, A.G. Burr, Z. Ding, O.A. Dobre, Spectral-energy efficiency trade-off-based beamforming design for miso non-orthogonal multiple access systems. IEEE Trans. Wirel. Commun. 19(10), 6593–6606 (2020)

    Article  Google Scholar 

  5. M.S. Ali, E. Hossain, A. Al-Dweik, D.I. Kim, Downlink power allocation for COMP-NOMA in multi-cell networks. IEEE Trans. Commun. 66(9), 3982–3998 (2018)

    Article  Google Scholar 

  6. S. Ali, E. Hossain, D.I. Kim, Non-orthogonal multiple access (NOMA) for downlink multiuser MIMO systems: user clustering, beamforming, and power allocation. IEEE Access 5, 565–577 (2016)

    Article  Google Scholar 

  7. S.H. Amin, A.H. Mehana, S.S. Soliman, Y.A. Fahmy, Power allocation for maximum MIMO-NOMA system user-rate, in 2018 IEEE Globecom Workshops (GC Wkshps) (IEEE, 2018), pp. 1–6

  8. A. Araghi, M. Khalily, M. Safaei, A. Bagheri, V. Singh, F. Wang, R. Tafazolli, Reconfigurable intelligent surface (RIS) in the sub-6 GHz band: design, implementation, and real-world demonstration. IEEE Access 10, 2646–2655 (2022)

    Article  Google Scholar 

  9. K. Aswini, M. Surendar, Capacity analysis of intelligent reflecting surface assisted RSMA system with perfect and imperfect CSI for 6G. J. Phys. Conf. Ser. 2466, 012001 (2023)

    Article  Google Scholar 

  10. F.A. Azhiri, B.M. Tazehkand, R. Abdolee, A novel EO-based optimum random beamforming method in mmWave-NOMA systems with sparse antenna array. Digit. Commun. Netw. (2023). https://doi.org/10.1016/j.dcan.2023.02.010

    Article  Google Scholar 

  11. V.L. Babu, L. Mathews, S.S. Pillai, Performance analysis of linear and nonlinear precoding in MIMO systems. Int. J. Adv. Res. Comput. Commun. Eng. 4(6), 373–376 (2015)

    Google Scholar 

  12. İ Baştürk, Evaluation of energy-efficiency problem in orthogonal frequency division multiple access cellular networks. Celal Bayar Univ. J. Sci. 15(1), 9–15 (2019)

    MathSciNet  Google Scholar 

  13. Y. Bo, J. Fonseka, Throughput enhancement on the downlink of 4G and 5G systems: NOMA, BOMA and IBOMA. Int. J. Sens. Wirel. Commun. Control 8(1), 57–64 (2018)

    Google Scholar 

  14. R.M. Buehrer, Code Division Multiple Access (CDMA) (Springer, Berlin, 2022)

    Google Scholar 

  15. B.P. Chaudhary, R. Shankar, R.K. Mishra, A tutorial on cooperative non-orthogonal multiple access networks. J. Defense Model. Simul. 19(4), 563–573 (2022)

    Article  Google Scholar 

  16. C. Chen, W. Cai, X. Cheng, L. Yang, Y. Jin, Low complexity beamforming and user selection schemes for 5G MIMO-NOMA systems. IEEE J. Sel. Areas Commun. 35(12), 2708–2722 (2017)

    Article  Google Scholar 

  17. X. Chen, D.W.K. Ng, W. Yu, E.G. Larsson, N. Al-Dhahir, R. Schober, Massive access for 5G and beyond. IEEE J. Sel. Areas Commun. 39(3), 615–637 (2020)

    Article  Google Scholar 

  18. Y. Cheng, K.H. Li, Y. Liu, K.C. Teh, H.V. Poor, Downlink and uplink intelligent reflecting surface aided networks: NOMA and OMA. IEEE Trans. Wirel. Commun. 20(6), 3988–4000 (2021)

    Article  Google Scholar 

  19. S. Chinnadurai, P. Selvaprabhu, Y. Jeong, X. Jiang, M.H. Lee, Worst-case energy efficiency maximization in a 5G massive MIMO-NOMA system. Sensors 17(9), 2139 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. S. Chinnadurai, P. Selvaprabhu, Y. Jeong, A.L. Sarker, H. Hai, W. Duan, M.H. Lee, User clustering and robust beamforming design in multicell MIMO-NOMA system for 5G communications. AEU-Int. J. Electron. Commun. 78, 181–191 (2017)

    Article  Google Scholar 

  21. S. Chinnadurai, P. Selvaprabhu, M.H. Lee, A novel joint user pairing and dynamic power allocation scheme in MIMO-NOMA system, in 2017 International Conference on Information and Communication Technology Convergence (ICTC) (IEEE, 2017), pp. 951–953

  22. K.H. Chung, On improved outage probability of correlated superposition coding/non-SIC NOMA. J. Korea Inst. Electron. Commun. Sci. 16(4), 611–616 (2021)

    MathSciNet  Google Scholar 

  23. J. Cui, Z. Ding, P. Fan, Power minimization strategies in downlink MIMO-NOMA systems, in 2017 IEEE International Conference on Communications (ICC) (IEEE, 2017), pp. 1–6

  24. X. Dai, Z. Zhang, B. Bai, S. Chen, S. Sun, Pattern division multiple access: a new multiple access technology for 5G. IEEE Wirel. Commun. 25(2), 54–60 (2018)

    Article  ADS  Google Scholar 

  25. O. Elijah, S.K.A. Rahim, W.K. New, C.Y. Leow, K. Cumanan, T.K. Geok, Intelligent massive MIMO systems for beyond 5G networks: an overview and future trends. IEEE Access 10, 102532 (2022)

    Article  Google Scholar 

  26. N. Estrada Brito, C. Morales Alarcón, Non-orthogonal multiple access technique performance in a long-term evolution mobile communication system. Revista Digital Novasinergia 3(1), 62–76 (2020)

    Google Scholar 

  27. J.L. Frauendorf, É. Almeida de Souza: Aas—advanced antenna system: the MIMO, massive MIMO, and beamforming antennas, in The Architectural and Technological Revolution of 5G (Springer, 2022), pp. 69–81

  28. M. Ghous, A.K. Hassan, Z.H. Abbas, G. Abbas, A. Hussien, T. Baker, Cooperative power-domain NOMA systems: an overview. Sensors 22(24), 9652 (2022)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. L.C. Godara, Applications of antenna arrays to mobile communications. I. Performance improvement, feasibility, and system considerations. Proc. IEEE 85(7), 1031–1060 (1997)

    Article  Google Scholar 

  30. K. Higuchi, Y. Kishiyama, Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink, in 2013 IEEE 78th Vehicular Technology Conference (VTC Fall) (IEEE, 2013), pp. 1–5

  31. R. Hoshyar, R. Razavi, M. Al-Imari, LDS-OFDM an efficient multiple access technique, in 2010 IEEE 71st Vehicular Technology Conference (IEEE, 2010), pp. 1–5

  32. Y. Hu, L. Ping, Interleave division multiple access (IDMA), in Multiple Access Techniques for 5G Wireless Networks and Beyond (2019), pp. 417–449

  33. H. Huang, Y. Shi, L. Liang, J. He, X. Zhang, Performance analysis of overlay cognitive NOMA network with imperfect SIC and imperfect CSI. Phys. Commun. 53, 101711 (2022)

    Article  Google Scholar 

  34. S.R. Islam, M. Zeng, O.A. Dobre, K.S. Kwak, Resource allocation for downlink NOMA systems: key techniques and open issues. IEEE Wirel. Commun. 25(2), 40–47 (2018)

    Article  Google Scholar 

  35. N. Iswarya, L. Jayashree, A survey on successive interference cancellation schemes in non-orthogonal multiple access for future radio access. Wirel. Pers. Commun. 120(2), 1057–1078 (2021)

    Article  Google Scholar 

  36. Joe: NOMA vs OMA—capacity comparison (2020). https://ecewireless.blogspot.com/2020/09/noma-vs-oma-capacity-comparison.html. Accessed 15 Jul 2023

  37. V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfröjd, T. Svensson, The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Commun. Mag. 52(5), 44–51 (2014)

    Article  Google Scholar 

  38. M. Kaliszan, E. Pollakis, S. Stańczak, Multigroup multicast with application-layer coding: Beamforming for maximum weighted sum rate, in 2012 IEEE Wireless Communications and Networking Conference (WCNC) (IEEE, 2012), pp. 2270–2275

  39. P.R. Kapula, P. Sridevi, Channel estimation in 5G multi input multi output wireless communication using optimized deep neural framework. Clust. Comput. 25(5), 3517–3530 (2022)

    Article  Google Scholar 

  40. F. Kara, H. Kaya, BER performances of downlink and uplink NOMA in the presence of SIC errors over fading channels. IET Commun. 12(15), 1834–1844 (2018)

    Article  Google Scholar 

  41. B.A. Karim, H.K. Ali, A novel beamforming technique using mmWave antenna arrays for 5G wireless communication networks. Digit. Signal Process. 134, 103917 (2023)

    Article  Google Scholar 

  42. R. Kataoka, I. Kanno, T. Hayashi, N. Tsumachi, T. Suzuki, H. Ishikawa, K. Yamazaki, Y. Kishi, Outdoor experimental evaluation of asynchronous successive interference cancellation for 5G in shared spectrum with different radio systems. IEICE Commun. Express 10(8), 587–592 (2021)

    Article  Google Scholar 

  43. W.U. Khan, M.A. Jamshed, E. Lagunas, S. Chatzinotas, X. Li, B. Ottersten, Energy efficiency optimization for backscatter enhanced NOMA cooperative V2X communications under imperfect CSI. IEEE Trans. Intell. Transp. Syst. (2022)

  44. B. Kimy, S. Lim, H. Kim, S. Suh, J. Kwun, S. Choi, C. Lee, S. Lee, D. Hong, Non-orthogonal multiple access in a downlink multiuser beamforming system, in MILCOM 2013-2013 IEEE Military Communications Conference (IEEE, 2013), pp. 1278–1283

  45. A. Koohang, C.S. Sargent, J.H. Nord, J. Paliszkiewicz, Internet of things (IoT): from awareness to continued use. Int. J. Inf. Manag. 62, 102442 (2022)

    Article  Google Scholar 

  46. K. Lakshmanna, R. Kaluri, N. Gundluru, Z.S. Alzamil, D.S. Rajput, A.A. Khan, M.A. Haq, A. Alhussen, A review on deep learning techniques for IoT data. Electronics 11(10), 1604 (2022)

    Article  Google Scholar 

  47. Q.N. Le, V.D. Nguyen, O.A. Dobre, N.P. Nguyen, R. Zhao, S. Chatzinotas, Learning-assisted user clustering in cell-free massive MIMO-NOMA networks. IEEE Trans. Veh. Technol. 70(12), 12872–12887 (2021)

    Article  Google Scholar 

  48. B.K.S. Lima, A.S. De Sena, R. Dinis, D.B. Da Costa, M. Beko, R. Oliveira, M. Debbah, Aerial intelligent reflecting surfaces in MIMO-NOMA networks: fundamentals, potential achievements, and challenges. IEEE Open J. Commun. Soc. 3, 1007–1024 (2022)

    Article  Google Scholar 

  49. S. Liu, C. Zhang, Non-orthogonal multiple access in a downlink multiuser beamforming system with limited CSI feedback. EURASIP J. Wirel. Commun. Netw. 2016(1), 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  50. Y. Liu, S. Zhang, X. Mu, Z. Ding, R. Schober, N. Al-Dhahir, E. Hossain, X. Shen, Evolution of NOMA toward next generation multiple access (NGMA) for 6G. IEEE J. Sel. Areas Commun. 40(4), 1037–1071 (2022)

    Article  CAS  Google Scholar 

  51. Z. Liu, P. Xiao, Z. Mheich, Power-imbalanced low-density signatures (LDS) from Eisenstein numbers, in 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS) (IEEE, 2019), pp. 1–5

  52. Z. Liu, L.L. Yang, Sparse or dense: a comparative study of code-domain NOMA systems. IEEE Trans. Wirel. Commun. 20(8), 4768–4780 (2021)

    Article  Google Scholar 

  53. D. López-Pérez, A. De Domenico, N. Piovesan, G. Xinli, H. Bao, S. Qitao, M. Debbah, A survey on 5G radio access network energy efficiency: massive MIMO, lean carrier design, sleep modes, and machine learning. IEEE Commun. Surv. Tutor. 24(1), 653–697 (2022)

    Article  Google Scholar 

  54. B. Lu, S. Lin, J. Shi, TDMA-NOMA based computation offloading for cognitive capacity harvesting networks with transmission order optimization. IEEE Trans. Commun. 70(9), 6355–6369 (2022)

    Article  Google Scholar 

  55. Y. Lu, Y. Qu, C. Yang, T. Li, X. Wang, H. Bian, H. Zhu, A user matching and power allocation scheme for downlink MIMO-NOMA communication system. Phys. Commun. 42, 101174 (2020)

    Article  Google Scholar 

  56. M.R. Mahmood, M.A. Matin, P. Sarigiannidis, S.K. Goudos, G.K. Karagiannidis, Residual compensation-based extreme learning machine for MIMO-NOMA receiver. IEEE Access 11, 13398–13407 (2023)

    Article  Google Scholar 

  57. M. Mhedhbi, F.E. Boukour, Analysis and evaluation of pattern division multiple access scheme jointed with 5G waveforms. IEEE Access 7, 21826–21833 (2019)

    Article  Google Scholar 

  58. A. Misra, U.R. Kalita, K.K. Sarma, Performance analysis of multi user MIMO NOMA network with hierarchical clustering. Int. J. Electron. Lett. (2022). https://doi.org/10.1080/21681724.2022.2129810

    Article  Google Scholar 

  59. P. Mursia, I. Atzeni, D. Gesbert, L. Cottatellucci, Covariance shaping for massive MIMO systems, in 2018 IEEE Global Communications Conference (GLOBECOM) (IEEE, 2018), pp. 1–6

  60. H.G. Myung, J. Lim, D.J. Goodman, Single carrier FDMA for uplink wireless transmission. IEEE Veh. Technol. Mag. 1(3), 30–38 (2006)

    Article  Google Scholar 

  61. G. Naik, J.M. Park, J. Ashdown, W. Lehr, Next generation Wi-Fi and 5G NR-U in the 6 GHz bands: opportunities and challenges. IEEE Access 8, 153027–153056 (2020)

    Article  Google Scholar 

  62. A. Nasser, O. Muta, M. Elsabrouty, H. Gacanin, Interference mitigation and power allocation scheme for downlink MIMO-NOMA HetNet. IEEE Trans. Veh. Technol. 68(7), 6805–6816 (2019)

    Article  Google Scholar 

  63. S. Norouzi, B. Champagne, Y. Cai, Joint optimization framework for user clustering, downlink beamforming, and power allocation in MIMO NOMA systems. IEEE Trans. Commun. 71(1), 214–228 (2022)

    Article  Google Scholar 

  64. H. Pan, S.C. Liew, Information update: TDMA or FDMA? IEEE Wirel. Commun. Lett. 9(6), 856–860 (2020)

    Article  Google Scholar 

  65. P. Pirinen, A brief overview of 5G research activities, in 1st International Conference on 5G for Ubiquitous Connectivity (IEEE, 2014), pp. 17–22

  66. B.U. Rehman, M.I. Babar, G.A. Azim, M. Amir, H. Alhumyani, M.S. Alzaidi, M. Alshammari, R. Saeed, Uplink power control scheme for spectral efficiency maximization in NOMA systems. Alex. Eng. J. 64, 667–677 (2023)

    Article  Google Scholar 

  67. S.U. Rehman, J. Ahmad, A. Manzar, M. Moinuddin, Outage probability and ergodic capacity analysis of MIMO-NOMA heterogeneous network for 5G system. J. Indep. Stud. Res. Comput. 20(2), 15–23 (2022)

    Google Scholar 

  68. S.U. Rehman, A. Hussain, F. Hussain, M.A. Mannan, A comprehensive study: 5G wireless networks and emerging technologies. Int. Electr. Eng. Conf. (IEEC) 5, 25–32 (2020)

    Google Scholar 

  69. S.U. Rehman, H. Mustafa, A.R. Larik, IoT based substation monitoring & control system using Arduino with data logging, in 2021 4th International Conference on Computing & Information Sciences (ICCIS) (IEEE, 2021), pp. 1–6

  70. S.U.R. Aqeel-ur Rehman, I.U. Khan, M. Moiz, S. Hasan, Security and privacy issues in IoT. Int. J. Commun. Netw. Inf. Secur. (IJCNIS) 8(3), 147–157 (2016)

    Google Scholar 

  71. F. Rinaldi, A. Raschella, S. Pizzi, 5G NR system design: a concise survey of key features and capabilities. Wirel. Netw. 27, 5173–5188 (2021)

    Article  Google Scholar 

  72. S.K. Sa, A.K. Mishra, An uplink cooperative NOMA based on CDRT with hardware impairments and imperfect CSI. IEEE Syst. J. (2023). https://doi.org/10.1109/JSYST.2023.3275469

    Article  Google Scholar 

  73. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, K. Higuchi, Non-orthogonal multiple access (NOMA) for cellular future radio access, in 2013 IEEE 77th vehicular technology conference (VTC Spring) (IEEE, 2013), pp. 1–5

  74. M. Sakai, K. Kamohara, H. Iura, H. Nishimoto, K. Ishioka, Y. Murata, M. Yamamoto, A. Okazaki, N. Nonaka, S. Suyama et al., Experimental field trials on MU-MIMO transmissions for high SHF wide-band massive MIMO in 5G. IEEE Trans. Wirel. Commun. 19(4), 2196–2207 (2020)

    Article  Google Scholar 

  75. T. Sanjana, M. Suma, Deep learning approaches used in downlink MIMO-NOMA system: a survey, in Soft Computing and Signal Processing: Proceedings of 3rd ICSCSP 2020, vol. 1 (Springer, 2021), pp. 687–704

  76. A. Sarin, A.T. Avestruz, A framework for code division multiple access wireless power transfer. IEEE Access 9, 135079–135101 (2021)

    Article  Google Scholar 

  77. M.A. Shaikh, A. Manzar, M. Moinuddin, S.U. Rehman, H. Mustafa, Semi-blind beamforming in beam space MIMO NOMA for mmWave communications. IEEE Access 10, 120426–120435 (2022)

    Article  Google Scholar 

  78. L. Shan, S. Gao, S. Chen, M. Xu, F. Zhang, X. Bao, M. Chen, Energy-efficient resource allocation in NOMA-integrated V2X networks. Comput. Commun. 197, 23–33 (2023)

    Article  Google Scholar 

  79. W. Shao, S. Zhang, X. Zhang, J. Ma, N. Zhao, Suppressing interference and power allocation over the multi-cell MIMO-NOMA networks. IEEE Commun. Lett. 23(8), 1397–1400 (2019)

    Article  Google Scholar 

  80. A. Sharma, R.K. Jha, A comprehensive survey on security issues in 5G wireless communication network using beamforming approach. Wirel. Pers. Commun. 119(4), 3447–3501 (2021)

    Article  Google Scholar 

  81. H. Sharma, N. Kumar, R. Tekchandani, Physical layer security using beamforming techniques for 5G and beyond networks: a systematic review. Phys. Commun. 54, 101791 (2022)

    Article  Google Scholar 

  82. P.K. Sharma, D. Sharma, E.K. Kumari, T.S. Rao, Performance analysis of non-orthogonal multiple access over orthogonal multiple access, in Wireless Communication with Artificial Intelligence (CRC Press), pp. 273–293

  83. M. Shehab, T. Khattab, M. Kucukvar, D. Trinchero, The role of 5g/6g networks in building sustainable and energy-efficient smart cities, in 2022 IEEE 7th International Energy Conference (ENERGYCON) (IEEE, 2022), pp. 1–7

  84. R. Shen, X. Wang, Y. Xu, Beamforming design for uplink multi-cell MIMO-NOMA systems, in 2019 IEEE 5th International Conference on Computer and Communications (ICCC) (IEEE, 2019), pp. 2039–2043

  85. Z. Shi, H. Wang, Y. Fu, G. Yang, S. Ma, F. Hou, T.A. Tsiftsis, Zero-forcing-based downlink virtual MIMO-NOMA communications in IoT networks. IEEE Internet Things J. 7(4), 2716–2737 (2019)

    Article  Google Scholar 

  86. W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, Coordinated beamforming for multi-cell MIMO-NOMA. IEEE Commun. Lett. 21(1), 84–87 (2016)

    Article  Google Scholar 

  87. W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, Non-orthogonal multiple access in multi-cell networks: theory, performance, and practical challenges. IEEE Commun. Mag. 55(10), 176–183 (2017)

    Article  Google Scholar 

  88. Y. Shobha, H. Rangaraju, Design of novel approach for emerging power-domain superposition coding (SC)-using hybrid NOMA-OFDM for 5G communications. Int. J. Intell. Unmanned Syst. (ahead-of-print) (2021)

  89. Z. Si, H. Wan, T. Qin, Z. Wang, RIS-aided cell-free MIMO system: perfect and imperfect CSI design for energy efficiency. IEICE Trans. Commun. (2023). https://doi.org/10.1587/transcom.2022EBP3173

    Article  Google Scholar 

  90. N.D. Sidiropoulos, T.N. Davidson, Z.Q. Luo, Transmit beamforming for physical-layer multicasting. IEEE Trans. Signal Process. 54(6), 2239–2251 (2006)

    Article  ADS  Google Scholar 

  91. G. Singh, A. Srivastava, V.A. Bohara, Z. Liu, Downlink performance of optical power domain NOMA for beyond 5G enabled V2X networks. IEEE Open J. Veh. Technol. 2, 235–248 (2021)

    Article  Google Scholar 

  92. S. Solanki, J. Park, I. Lee, On the performance of IRS-aided UAV networks with NOMA. IEEE Trans. Veh. Technol. 71(8), 9038–9043 (2022)

    Article  Google Scholar 

  93. A.B. Tambawal, R.M. Noor, R. Salleh, C. Chembe, M.H. Anisi, O. Michael, J. Lloret, Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: a survey. Telecommun. Syst. 70, 595–616 (2019)

    Article  Google Scholar 

  94. M. Tian, Q. Zhang, S. Zhao, Q. Li, J. Qin, Robust beamforming in downlink MIMO NOMA networks using cutting-set method. IEEE Commun. Lett. 22(3), 574–577 (2017)

    Article  Google Scholar 

  95. H. Tran, V.H. Dang, D. Niyato, D.N. Cuong, N.C. Luong, C. So-In et al., Outage probability minimization in secure NOMA cognitive radio systems with UAV relay: a machine learning approach. IEEE Trans. Cogn. Commun. Netw. 9(2), 435–451 (2022)

    Google Scholar 

  96. A. Tusha, S. Doğan, H. Arslan, A hybrid downlink NOMA with OFDM and OFDM-IM for beyond 5G wireless networks. IEEE Signal Process. Lett. 27, 491–495 (2020)

    Article  ADS  Google Scholar 

  97. B. Wang, L. Dai, Z. Wang, N. Ge, S. Zhou, Spectrum and energy-efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array. IEEE J. Sel. Areas Commun. 35(10), 2370–2382 (2017)

    Article  Google Scholar 

  98. C.L. Wang, T.H. Liou, Improved modulation schemes for lattice-partition-based downlink non-orthogonal multiple access systems. IEEE Wirel. Commun. Lett. 9(12), 2130–2134 (2020)

    Article  Google Scholar 

  99. Q. Wang, T. Li, R. Feng, C. Yang, An efficient large resource-user scale SCMA codebook design method. IEEE Commun. Lett. 23(10), 1787–1790 (2019)

    Article  Google Scholar 

  100. F. Wei, W. Chen, Low complexity iterative receiver design for sparse code multiple access. IEEE Trans. Commun. 65(2), 621–634 (2016)

    Article  ADS  Google Scholar 

  101. C. Windpassinger, R.F. Fischer, T. Vencel, J.B. Huber, Precoding in multiantenna and multiuser communications. IEEE Trans. Wirel. Commun. 3(4), 1305–1316 (2004)

    Article  Google Scholar 

  102. Y. Wu, L.P. Qian, Energy-efficient NOMA-enabled traffic offloading via dual-connectivity in small-cell networks. IEEE Commun. Lett. 21(7), 1605–1608 (2017)

    Article  Google Scholar 

  103. Y. Wu, Y. Song, T. Wang, L. Qian, T.Q. Quek, Non-orthogonal multiple access assisted federated learning via wireless power transfer: a cost-efficient approach. IEEE Trans. Commun. 70(4), 2853–2869 (2022)

    Article  Google Scholar 

  104. K. Xiao, S. Dai, H. Rutagemwa, B. Rong, L. Gong, M. Kadoch, A novel opportunistic NOMA scheme for 5G massive MIMO multicast communications, in 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall) (IEEE, 2017), pp. 1–5

  105. Z. Xiao, Z. Han, A. Nallanathan, O.A. Dobre, B. Clerckx, J. Choi, C. He, W. Tong, Antenna array enabled space/air/ground communications and networking for 6G. IEEE J. Sel. Areas Commun. 40(10), 2773–2804 (2022)

    Article  Google Scholar 

  106. Z. Xie, W. Yi, X. Wu, Y. Liu, A. Nallanathan, Modeling and coverage analysis for RIS-aided NOMA transmissions in heterogeneous networks. arXiv preprint arXiv:2104.13182 (2021)

  107. L. Yang, Y. Liu, Y. Siu, Low complexity message passing algorithm for SCMA system. IEEE Commun. Lett. 20(12), 2466–2469 (2016)

    Article  Google Scholar 

  108. X. Yue, Y. Liu, Performance analysis of intelligent reflecting surface assisted NOMA networks. IEEE Trans. Wirel. Commun. 21(4), 2623–2636 (2021)

    Article  Google Scholar 

  109. X. Yue, Z. Qin, Y. Liu, S. Kang, Y. Chen, A unified framework for non-orthogonal multiple access. IEEE Trans. Commun. 66(11), 5346–5359 (2018)

    Article  Google Scholar 

  110. C.H. Yuen, P. Amini, B. Farhang-Boroujeny, Single carrier frequency division multiple access (SC-FDMA) for filter bank multicarrier communication systems, in 2010 Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks and Communications (IEEE, 2010), pp. 1–5

  111. M. Zeeshan, K. Shahzad, M.U. Farooq, Noma-enabled cognitive communication based on hybrid narrowband/wideband SDR waveform, in 2022 3rd International Informatics and Software Engineering Conference (IISEC) (IEEE, 2022), pp. 1–6

  112. M. Zeng, N.P. Nguyen, O.A. Dobre, H.V. Poor, Securing downlink massive MIMO-NOMA networks with artificial noise. IEEE J. Sel. Top. Signal Process. 13(3), 685–699 (2019)

    Article  ADS  Google Scholar 

  113. M. Zeng, A. Yadav, O.A. Dobre, G.I. Tsiropoulos, H.V. Poor, Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster. IEEE J. Sel. Areas Commun. 35(10), 2413–2424 (2017)

    Article  Google Scholar 

  114. Q. Zhang, Q. Li, J. Qin, Robust beamforming for nonorthogonal multiple-access systems in miso channels. IEEE Trans. Veh. Technol. 65(12), 10231–10236 (2016)

    Article  Google Scholar 

  115. S. Zhang, Z. Yang, M. Chen, D. Liu, K.K. Wong, H.V. Poor, Beamforming design for the performance optimization of intelligent reflecting surface assisted multicast MIMO networks. arXiv preprint arXiv:2208.07048 (2022)

  116. Y. Zhang, K. Peng, X. Wang, J. Song, Performance analysis and code optimization of IDMA with 5G new radio LDPC code. IEEE Commun. Lett. 22(8), 1552–1555 (2018)

    Article  ADS  Google Scholar 

  117. Z. Zhang, J. Liu, Y. Li, Design and analysis of a multi-input multi-output system for high power based on improved magnetic coupling structure. Energies 15(5), 1684 (2022)

    Article  Google Scholar 

  118. Z. Zhang, H. Sun, R.Q. Hu, Downlink and uplink non-orthogonal multiple access in a dense wireless network. IEEE J. Sel. Areas Commun. 35(12), 2771–2784 (2017)

    Article  Google Scholar 

  119. J. Zhao, Y. Liu, K.K. Chai, A. Nallanathan, Y. Chen, Z. Han, Spectrum allocation and power control for non-orthogonal multiple access in HetNets. IEEE Trans. Wirel. Commun. 16(9), 5825–5837 (2017)

    Article  Google Scholar 

  120. Z. Zhao, W. Chen, An adaptive switching method for sum rate maximization in downlink MISO-NOMA systems, in GLOBECOM 2017-2017 IEEE Global Communications Conference (IEEE, 2017), pp. 1–6

  121. B. Zheng, Q. Wu, R. Zhang, Intelligent reflecting surface-assisted multiple access with user pairing: NOMA or OMA? IEEE Commun. Lett. 24(4), 753–757 (2020)

    Article  Google Scholar 

  122. X. Zou, B. He, H. Jafarkhani, An analysis of two-user uplink asynchronous non-orthogonal multiple access systems. IEEE Trans. Wirel. Commun. 18(2), 1404–1418 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia, has funded this project, under Grant No. (KEP-MSc: 63-135-1443).

Funding

The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia, has funded this project, under grant no. (KEP-MSc: 63-135-1443).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawwad Ahmad.

Ethics declarations

Conflict of interest

Authors do not have any conflict of interest for the submitted work.

Code Availability

Code can be made available on request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, S.U., Ahmad, J., Manzar, A. et al. Beamforming Techniques for MIMO-NOMA for 5G and Beyond 5G: Research Gaps and Future Directions. Circuits Syst Signal Process 43, 1518–1548 (2024). https://doi.org/10.1007/s00034-023-02517-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02517-w

Keywords

Navigation