Skip to main content
Log in

A Low-Power Common-Mode Detector with PVT-Compensation Technique for Dynamic Amplifier in Delta-Sigma Modulator

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A low-power common-mode detector (LPCMD) with process, supply voltage and temperature (PVT)-compensation technique for the dynamic amplifier in delta-sigma modulator (DSM) is proposed. By adopting the varying supply voltages to compensate the variation of the transistors’ threshold voltage, the proposed LPCMD improves the robustness of the dynamic amplifier (DA). Additionally, the auxiliary circuit providing the varying supply voltages is realized by the low-power regulator, which has the advantage of low power and low complexity. To demonstrate the feasibility of the proposed LPCMD with the PVT-compensation technique, a second-order 2-bit quantization-based DSM is designed in 180 nm CMOS technology and the postlayout simulation is performed. The DSM achieves a signal-to-noise-and-distortion ratio (SNDR) and spurious-free-dynamic range (SFDR) of 93 dB and 95 dB at the sampling frequency of 204.8 kHz, respectively, with the power consumption of 11 µW, leading to a 171.6 dB SNDR-based Schreier figure-of-merit (FoMSNDR). Furthermore, the SNDR degradation of the DSM under all process corner and temperature from − 40 to 125 ℃ is less than 3 dB. The postlayout simulation result of the DSM verifies the feasibility and effectiveness of the proposed LPCMD and PVT-compensation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The processed data and material required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. C.D. Berti, P. Malcovati, L. Crespi, A. Baschirotto, A 106 dB A-weighted DR low-power continuous-time ΣΔ modulator for MEMS microphones. IEEE J. Solid State Circuits 51(7), 1607–1618 (2016). https://doi.org/10.1109/JSSC.2016.2540811

    Article  Google Scholar 

  2. F. Cardes, E. Gutierrez, A. Quintero, C. Buffa, A. Wiesbauer, L. Hernandez, A 0.04-mm2 103-dB dynamic range second-order VCO based audio ΣΔ ADC in 0.13-μm CMOS. IEEE J. Solid State Circuits 53(6), 1731–1742 (2018). https://doi.org/10.1109/JSSC.2018.2799938

    Article  Google Scholar 

  3. Y. Chae, G. Han, Low voltage, low power, inverter-based switched capacitor delta-sigma modulator. IEEE J. Solid State Circuits 44(2), 458–472 (2009). https://doi.org/10.1109/JSSC.2008.2010973

    Article  Google Scholar 

  4. Y. Chae, K. Souri, K.A.A. Makinwa, A 63 μW 20 bit incremental zoom-ADC with 6 ppm INL and 1 μV offset. IEEE J. Solid State Circuits 48(12), 3019–3027 (2013)

    Article  Google Scholar 

  5. C. Chen, L. Chen, A 79-dB SNR 1.1-mW fully integrated hearing aid SoC. Circuits Syst. Signal Process 38, 2893–2909 (2019). https://doi.org/10.1007/s00034-018-1002-6

    Article  Google Scholar 

  6. M. Ding, P. Harpe, Y. Liu, B. Busze, K. Philips, H.D. Groot, A 46 μW 13 b 6.4 MS/s SAR ADC with background mismatch and offset calibration. IEEE J. Solid State Circuits 52(2), 423–432 (2017). https://doi.org/10.1109/JSSC.2016.2609849

    Article  Google Scholar 

  7. H. Ghaedrahmati, J. Zhou and L. Shi, Gain-boosted Complementary Dynamic Residue Amplifier for a 160 MS/s 61 dB SNDR Noise-Shaping SAR ADC. in 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), (Windsor, ON, Canada, 2018), pp. 141-144. https://doi.org/10.1109/MWSCAS.2018.8624092

  8. Y. Guo, J. Jin and J. Zhou, A Low Power PVT Stabilization Technique for Dynamic Amplifier in Pipelined SAR ADC. in 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), (2021), pp. 18–21. https://doi.org/10.1109/MWSCAS47672.2021.9531829

  9. P. Harpe, E. Cantatore, A. van Roermund, A 10b/12b 40 kS/s SAR ADC with data-driven noise reduction achieving up to 10.1b ENOB at 2.2 fJ/conversion-step. IEEE J. Solid State Circuits 48(12), 3011–3018 (2013). https://doi.org/10.1109/JSSC.2013.2278471

    Article  Google Scholar 

  10. M. Hu, J. Jin, Y. Guo et al., A power-efficient SAR ADC with optimized timing-redistribution asynchronous SAR logic in 40-nm CMOS. Circuits Syst Signal Process 40, 3125–3142 (2021). https://doi.org/10.1007/s00034-020-01643-z

    Article  Google Scholar 

  11. H. Huang, H. Xu, B. Elies, Y. Chiu, A non-interleaved 12-b 330-MS/s pipelined-SAR ADC With PVT-stabilized dynamic amplifier achieving sub-1-dB SNDR variation. IEEE J. Solid State Circuits 52(12), 3235–3247 (2017). https://doi.org/10.1109/JSSC.2017.2732731

    Article  Google Scholar 

  12. R. Jacob Baker, CMOS Circuit Design. Layout and Simulation (Wiley-IEEE Press, New Jersey, 2010)

    Book  Google Scholar 

  13. H. Li, M. Maddox, M. C. W. Coin, W. Buckley, D. Hummerston, N. Naeem, A signal-independent background-calibrating 20b 1MS/S SAR ADC with 0.3ppm INL. In IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, (2018), pp. 242–244. https://doi.org/10.1109/ISSCC.2018.8310274.

  14. J. Lin, M. Miyahara, A. Matsuzawa, A 15.5 dB, wide signal swing, dynamic amplifier using a common-mode voltage detection technique. in 2011 IEEE International Symposium on Circuits & Systems (ISCAS), (2011), pp. 21–24. https://doi.org/10.1109/ISCAS.2011.5937491

  15. S. Liu, H. Han, Y. Shen, Z. Zhu, A 12-bit 100-MS/s pipelined-SAR ADC With PVT-insensitive and gain-folding dynamic amplifier. IEEE Trans. Circuits Syst. I Regul. Pap. 67(8), 2602–2611 (2020). https://doi.org/10.1109/TCSI.2020.2982913

    Article  Google Scholar 

  16. L. Luo, Y. Wu, J. Wei, F. Ye, J. Ren, A capacitively-degenerated high-linearity dynamic amplifier using a real-time gain detection technique. in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), (2019), pp. 1–4. https://doi.org/10.1109/ISCAS.2019.8702359

  17. M. Miyahara, A. Matsuzawa, An 84 dB dynamic range 62.5–625 kHz bandwidth clock-scalable noise-shaping SAR ADC with open loop integrator using dynamic amplifier. in 2017 IEEE Custom Integrated Circuits Conference (CICC), (Austin, TX, 2017), pp. 1–4. https://doi.org/10.1109/CICC.2017.7993655

  18. S. R. Patri, S. Alapati, S. Chowdary, K. Prasad, 250 mA ultra low drop out regulator with high slew rate double recycling folded cascode error amplifier. in 18th International Symposium on VLSI Design and Test, (2014), pp. 1–5. https://doi.org/10.1109/ISVDAT.2014.6881067

  19. S. Pavan, R. Schreier, G.C. Temes, Understanding Delta-Sigma Data Converters (Wiley-IEEE Press, New Jersey, 2017)

    Google Scholar 

  20. J. Pérez-Bailón, A. Márquez, B. Calvo and N. Medrano, An all-MOS low-power fast-transient 1.2 V LDO regulator. in 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), (2017), pp. 337–340. https://doi.org/10.1109/PRIME.2017.7974176

  21. B. Razavi, Design of Analog CMOS Integrated Circuits (McGraw-Hill, New York, 2001)

    Google Scholar 

  22. S.M. Riazul Islam, D. Kwak, M. Humaun Kabir, M. Hossain, K.-S. Kwak, The internet of things for health care: a comprehensive survey. IEEE Access 3, 678–708 (2015). https://doi.org/10.1109/ACCESS.2015.2437951

    Article  Google Scholar 

  23. G.A. Rincon-Mora, Analog IC Design with Low-Dropout Regulators (LDOs) (McGraw-Hill, New York, 2009)

    Google Scholar 

  24. J. Shen et al., A 16-bit 16MS/s SAR ADC with on-chip calibration in 55nm CMOS. in Symposium VLSI Circuits, (2017), pp. C282–C283. https://doi.org/10.23919/VLSIC.2017.8008509

  25. X. Tong, M. Song, Y. Chen et al., A 10-Bit 120 kS/s SAR ADC without reset energy for biomedical electronic. Circuits Syst Signal Process 38, 5411–5425 (2019). https://doi.org/10.1007/s00034-019-01138-6

    Article  Google Scholar 

  26. F. Van der Goes, S. Ward, S. Astgimath, et al., A 1.5 mW 68 dB SNDR 80MS/s 2 × interleaved SAR-assisted pipelined ADC in 28 nm CMOS. In IEEE ISSCC Digest Technical Papers (San Francisco, California, USA, 2014), pp. 200–201. https://doi.org/10.1109/ISSCC.2014.6757399

  27. R. Wang, Y. Guo, J. Jin, X. Liu, N. Jing, J. Zhou, A low power temperature-compensated common-mode voltage detector for dynamic amplifiers. in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), (2020), pp. 1–4. https://doi.org/10.1109/ISCAS45731.2020.9180689

  28. X. Xiong, H. Zhuang, Q. Cao, H. Tang, A large-swing high-linearity fully-dynamic amplifier with automatic calibration. IEEE Trans. Circuits Syst. II Express Briefs 70(2), 366–370 (2023). https://doi.org/10.1109/TCSII.2022.3167909

    Article  Google Scholar 

  29. M. Zhang, K. Noh, X. Fan, E. Sánchez-Sinencio, A 0.8–0.2 V 10–50 MS/s 13-bit subranging pipelined-SAR ADC using a temperature-insensitive time-based amplifier. IEEE J. Solid State Circuits 52(11), 2991–3005 (2017). https://doi.org/10.1109/JSSC.2017.2742523

    Article  Google Scholar 

  30. M. Zhang, K. Noh, X. Fan, E. Sánchez-Sinencio, A temperature compensation technique for a dynamic amplifier in pipelined-SAR ADCs. IEEE Solid State Circuits Lett. 1(1), 10–13 (2018). https://doi.org/10.1109/LSSC.2018.2794783

    Article  Google Scholar 

  31. M. Zhang, Q. Liu, X. Fan, Gain-boosted dynamic amplifier for pipelined-SAR ADCs. Electron. Lett. 53(11), 708–709 (2017). https://doi.org/10.1049/el.2017.0146

    Article  Google Scholar 

  32. M. Zhao et al., A 4-μW bandwidth/power scalable delta-sigma modulator based on swing-enhanced floating inverter amplifiers. IEEE J. Solid State Circuits 57(3), 709–718 (2022). https://doi.org/10.1109/JSSC.2021.3123261

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was sponsored by National Natural Science Foundation of China under Grant Nos. 62074112, 62090040 and Shanghai Municipal Science and Technology Major Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Qiu.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Qiu, L. A Low-Power Common-Mode Detector with PVT-Compensation Technique for Dynamic Amplifier in Delta-Sigma Modulator. Circuits Syst Signal Process 42, 3795–3811 (2023). https://doi.org/10.1007/s00034-023-02316-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02316-3

Keywords

Navigation