Skip to main content
Log in

Complete Design Guidelines for Fractional-Order Colpitts Oscillator with Non-ideal Op-Amp

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents complete design guidelines for a typical fractional-order Colpitts oscillator (FOCO) with a non-ideal op-amp. These guidelines include effects of op-amp non-idealities like, open-loop dc gain, unity gain frequency and output resistance, into the design. The relation among these non-idealities and the frequency of oscillation (\(f_o\)) are analytically established and an optimal configuration for FOCO is identified. The paper discusses multiple case studies on parametric variation, parameter sensitivities and oscillator stability. The proposed guidelines are validated with LTSpice simulations and practical experimentation along with step-by-step design examples. Practical results are compared with earlier reported FOCO which shows higher frequency and larger amplitude for the designed FOCO at a comparable THD. The proposed guidelines are generic in the sense that they are applicable for any order (including integer order), for any type of fractor realization technique, and also for any active element which has first-order behavioral model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets supporting the conclusions of this article are included within the article.

References

  1. M.T. Abuelma’atti, A.A. Farooqi, S.M. Alshahrani, Novel shape RC oscillators using the current-feedback operational amplifier. IEEE Trans. Circuits Syst. I(43), 155 (1996)

    Article  Google Scholar 

  2. A. Adhikary, Characterization, packaging and application of a wide shape CP zone shape CNT based fractor. AEU Int. J. Electron. Commun. 127, 153441 (2020)

    Article  Google Scholar 

  3. A. Adhikary, S. Chaudhary, S. Sen, Optimal design of a fractional order immittance in the second quadrant with wide shape CPZ. AEU Int. J. Electron. Commun. 130, 153567 (2021)

    Article  Google Scholar 

  4. A. Adhikary, S. Choudhary, S. Sen, Optimal design for realizing a grounded fractional order inductor using shape GIC. I. IEEE Trans. Circuits Syst. 65(8), 2411–2421 (2018)

    Article  MathSciNet  Google Scholar 

  5. A. Adhikary, M. Khanra, S. Sen, K. Biswas, Realization of a carbon nanotube based electrochemical fractor. In: IEEE International Symposium on Circuits and Sys. (ISCAS), Lisbon, Portugal, pp. 2329–32 (2015)

  6. A. Adhikary, P. Sen, S. Sen, K. Biswas, Design and performance study of dynamic fractors in any of the four quadrants. Circuits Syst. Signal Process. 35(6), 1909–1932 (2015)

    Article  MathSciNet  Google Scholar 

  7. A. Adhikary, A. Shil, K. Biswas, Realization of foster structure-based ladder fractor with phase band specification. Circuits Syst. Signal Process. 39, 2272–2292 (2019)

    Article  Google Scholar 

  8. A. Agambayev, A. Kartci, A.H. Hassan, N. Herencsar, H. Bagci, K.N. Salama, Fractional-order hartley oscillator. In: 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2018)

  9. W. Ahmad, R. El-khazali, A. Elwakil, Fractional-order Wien-bridge oscillator. IET Electron. Lett. 37(18), 1110–1112 (2001)

    Article  Google Scholar 

  10. G.M. Ahmed, L.A. Said, A.H. Madian, A.G. Radwan, Fractional-order oscillators based on double op-amp. In: 4th International Conference Advance Computing Tools and Their Application in Structural Engineering (ACTEA), Beirut, Lebanon, pp. 1–4 (2019)

  11. M. Bucolo, A. Buscarino, C. Famoso, L. Fortuna, S. Gagliano, Imperfections in integrated devices allow the emergence of unexpected strange attractors in electronic circuits. IEEE Access 9, 29573–29583 (2021)

    Article  Google Scholar 

  12. G.E. Carlson, C.A. Halijak, Approximation of fractional capacitors \((1/s)^{1/n}\) by a regular Newton process. IEEE Trans. Circuits Syst. CAS-11(2), 210–213 (1964)

  13. A. Charef, Analogue realisation of fractional-order integrator, differentiator and fractional shape pi\(^{\lambda }\)d\(^{\mu }\) controller. IEEE Proc.-Control Theory Appl. 153(6), 714–720 (2006)

    Article  Google Scholar 

  14. M.R. Dar, F.A. Khanday, C. Psychalinos, Multiphase fractional-order sinusoidal oscillator design using shape CFOA. Int. J. Adv. Res. Sci. Eng. 6(10), 926–934 (2017)

    Google Scholar 

  15. J. Dvorak, D. Kubanek, J. Koton, J. Jerabek, D. Smeka, Adjustable multiphase sinusoidal oscillator with fractional-order elements. In: 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Dublin, Ireland (2019)

  16. A.S. Elwakil, A. Agambayev, A. Allagui, K.N. Salama, Experimental demonstration of fractional-order oscillators of orders 2.6 and 2.7. Chaos Solitons Fractals 96, 160–164 (2017)

  17. A.S. Elwakil, A. Allagui, B.J. Maundy, C. Psychalinos, A low frequency oscillator using a super-capacitor. AEU Int. J. Electron. Commun. 70(7), 970–973 (2016)

    Article  Google Scholar 

  18. O. Elwy, L.A. Said, A.H. Madian, A.G. Radwan, Fractional-order relaxation oscillators based on op-amp and OTRA. In: 30th International Conference Microelectronics, Sousse, Tunisia, pp. 212–215 (2018)

  19. O. Elwy, L.A. Said, A.H. Madian, A.G. Radwan, All possible topologies of the fractional-order wien oscillator family using different approximation techniques. Circuits Syst. Signal Process. 38(9), 3931–3951 (2019)

    Article  Google Scholar 

  20. İbrahim Ethem Saçu, M. Alçi, An electronically controllable fractional multivibrator. IET J. Res. 67, 313–321 (2017)

  21. İbrahim Ethem Saçu, M. Alçi, Design and realisation of a fractional-order sinusoidal oscillator. IET Circuits Devices Syst. 14, 1173–84 (2020)

  22. M.E. Fouda, A. Soltan, A.G. Radwan, A.M. Soliman, Fractional-order multi-phase oscillators design and analysis suitable for higher-order shape PSK applications. Analog Intger. Circuits Signal Process. 87, 301–312 (2016)

    Article  Google Scholar 

  23. S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 3rd edn. (McGraw-Hili, New work, 2002)

    Google Scholar 

  24. S. Kapoulea, P. Bertsias, C. Psychalinos, A. S. Elwakil, MOS realizations of fractional-order elements, vol. 3, pp. 1–33. Academic Press (2022)

  25. S. Kapoulea, C. Psychalinos, A. Elwakil, Realizations of simple fractional-order capacitor emulators with electronically-tunable capacitance. Integration 69, 225–333 (2019)

    Article  Google Scholar 

  26. S. Kapoulea, C. Psychalinos, A.S. Elwakil, FPAA based realization of filters with fractional laplace operators of different orders. Fractal Fract 5, 1–10 (2021)

    Article  Google Scholar 

  27. A. Kartci, A. Agambayev, A.H. Hassan, H. Bagci, K.N. Salama, Experimental verification of a fractional-order wien oscillator built using solid-state capacitors. In: IEEE 61st International Midwest Symposium on Circuits and Systems(MWSCAS), Windsor, Canada, pp. 544–545 (2018)

  28. A. Kartci, L. Brancik, CFOA based fractional-order oscillator design and analysis with nilt method. In: 27th International Conference Radioelektronika, Brno, Czech Republic (2017)

  29. A. Kartci, N. Herencsar, J. Koton, L. Brancik, K. Vrba, G. Tsirimokou, C. Psychalinos, Fractional-order oscillator design using unity-gain voltage buffers and OTAs. In: IEEE 60th International Midwest Symposium on Circuits (MWSCAS), Boston, USA, pp. 555–558 (2017)

  30. A. Kartci, N. Herencsar, R. Sotner, J. Jerabek, K. Vrba, CMOS-RC colpitts oscillator design using floating fractional-order inductance simulator. In: 61st International Midwest Symposium on Circuits and Systems, Windsor, Canada, pp. 905–908 (2018)

  31. D. Kubánek, F. Khateb, G. Tsirimokou, C. Psychalinos, Practical design and evaluation of fractional-order oscillator using differential voltage current conveyors. Circuits, Syst. Signal Process. 35, 2003–2016 (2016)

  32. B. Maundy, A. Elwakil, S. Gift, On a multivibrator that employs a fractional capacitor. Analog Integr. Circuit Signal Process. 62, 99–103 (2009)

    Article  Google Scholar 

  33. B. Maundy, A. Elwakil, S. Gift, On the realization of multiphase oscillators using fractional-order allpass filters. Circuits Syst. Signal Process. 31(1), 3–17 (2012)

    Article  MathSciNet  Google Scholar 

  34. S.K. Mishra, M. Gupta, D.K. Upadhyay, Compact design of four-phase fractional-order oscillator with independent phase and frequency control. Indian J. Phys. 93, 891–901 (2019)

    Article  Google Scholar 

  35. S.K. Mishra, D.K. Upadhyay, M. Gupta, An approach to improve the performance of fractional-order sinusoidal oscillators. Chaos Solitons Fractals 116, 126–135 (2018)

    Article  Google Scholar 

  36. S.K. Mishra, D.K. Upadhyay, M. Gupta, Compact design of fractional order LC oscillator. In: URSI Asia-Pacific Radio Science Conference (AP-RASC), New Delhi, India, pp. 1–4 (2019)

  37. A. Oustaloup, F. Levron, B. Mathieu, F. Nanot, Frequency band complex non integer differentiator: characterization and synthesis. I. IEEE Trans. Circuits Syst. 47(1), 25–40 (2000)

    Article  Google Scholar 

  38. A. Pradhan, K.S. Subhadhra, N. Atique, R.K. Sharma, S.S. Gupta, MMCC - based current-mode fractional-order voltage-controlled oscillators. In: Second International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, pp. 763–768 (2018)

  39. A.G. Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators: design procedure and practical examples. I. IEEE Trans. Circuits Syst. 55(7), 2051–2063 (2008)

    Article  MathSciNet  Google Scholar 

  40. A.G. Radwan, A.M. Soliman, A.S. Elwakil, Design equations for fractional-order sinusoidal oscillators: four practical circuit examples. Int. J. Circuit Theory Appl. 36, 473–492 (2008)

    Article  Google Scholar 

  41. A.G. Radwan, A.M. Soliman, A.S. Elwakil, A. Sedeek, On the stability of linear systems with fractional-order elements. Fractal Fract. 40, 2317–2328 (2009)

    MATH  Google Scholar 

  42. L.A. Said, O. Elwy, A.H. Madian, A.G. Radwan, A.M. Soliman, Stability analysis of fractional-order colpitts oscillators. Analog Integr. Circuits Signal Process. 101, 267–279 (2019)

    Article  Google Scholar 

  43. L.A. Said, A.G. Radwan, A.H. Madian, A.M. Soliman, Fractional order oscillators based on operational transresistance amplifiers. AEU Int. J. Electron. Commun. 69(7), 988–1003 (2015)

    Article  Google Scholar 

  44. L.A. Said, A.G. Radwan, A.H. Madian, A.M. Soliman, Fractional-order oscillator based on single CCII. In: 39th International Conference Telecommunication Signal Process. (TSP), Vienna, Austria, pp. 603–606 (2016)

  45. L.A. Said, A.G. Radwan, A.H. Madian, A.M. Soliman, Fractional order oscillator design based on two-port network. Circuits Syst. Signal Process. 35(9), 3086–3112 (2016)

    Article  MathSciNet  Google Scholar 

  46. L.A. Said, A.G. Radwan, A.H. Madian, A.M. Soliman, Three fractional-order-capacitors-based oscillators with controllable phase and frequency. J. Circuits Syst. Comput. 26(10), 1750160 (2017)

    Article  Google Scholar 

  47. A. Silva-Juárez, E. Tlelo-Cuautle, L.G. de la Fraga, R. Li, shape FPAA based implementation of fractional-order chaotic oscillators using first-order active filter blocks. J. Adv. Res. 25, 77–85 (2022)

    Article  Google Scholar 

  48. A. Soltan, A.G. Radwan, A.M. Soliman, General procedure for two integrator loops fractional order oscillators with controlled phase difference. In: 25th International Conference on Microelectronics (ICM), Beirut, Lebanon (2013)

  49. R. Sotner, J. Jerabek, L. Polak, L. Langhammer, H. Stolarova, J. Petrzela, D. Andriukaitis, A. Valinevicius, On the performance of electronically tunable fractional-order oscillator using grounded resonator concept. AEU Int. J. Electron. Commun. 129, 1–17 (2021)

    Article  Google Scholar 

  50. K.S. Subhadhra, R.K. Sharma, S.S. Gupta, Realisation of some current-mode fractional-order shape VCOs/shape SRCOs using multiplication mode current conveyors. Analog Integr. Circuit Signal Process. 103, 31–55 (2020)

    Article  Google Scholar 

  51. G. Tsirimokou, C. Psychalinos, A. Elwakil, B. Maundy, Fractional-order multiphase sinusoidal oscillator design using current-mirrors. In: 2018 41st International Conference on Telecommunications and Signal Processing, TSP 2018 (2018)

  52. G. Tsirimokou, C. Psychalinos, A. Elwakil, B.J. Maundy, Analysis and experimental verification of a fractional-order hartley oscillator. In: European Conference on Circuit Theory and Design (ECCTD), pp. 1–4 (2017)

  53. M.A. Valencia-Ponce, P.R. Castañeda-Aviña, E. Tlelo-Cuautle, V.H. Carbajal-Gómez, V.R. González-Díaz, Y. Sandoval-Ibarra, J.C. Nuñez-Perez, CMOS OTA based filters for designing fractional-order chaotic oscillators. Fractal Fract. 5, 1–16 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishek Adhikary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapadar, A., Sachan, S. & Adhikary, A. Complete Design Guidelines for Fractional-Order Colpitts Oscillator with Non-ideal Op-Amp. Circuits Syst Signal Process 41, 5340–5365 (2022). https://doi.org/10.1007/s00034-022-02045-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02045-z

Keywords

Navigation