Skip to main content
Log in

Efficient Approximate Multiplier Based on a New 1-Gate Approximate Compressor

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Multiplier is one of the most important arithmetic blocks in computer arithmetic units, which affects the performance of the whole system. Improving efficiency and reducing power consumption can be achieved at the cost of reducing the computation accuracy. One approach to design approximate multipliers is to use an approximate compressor. This paper proposes an approximate compressor to be exploited in a multiplier circuit. The proposed compressor consists of only one gate. According to the simulation results with 28-nm standard cell-based technology, the proposed approximate compressor improves by 62% compared to the fastest available work. Also, at equal delays, its power consumption and area improve by 52% and 61%, respectively, compared with the best existing design. Moreover, the results indicate that the proposed approximate compressor may provide up to 53%, 86%, and 57% improvements in power–delay product, energy–delay product, and area–delay product, respectively, compared to the most efficient design. Finally, the efficiency of the proposed multiplier is investigated in image applications. The results show that the efficiency of the proposed multiplier excels the existing approximate and accurate counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. M. Ahmadinejad, M. HosseinMoaiyeri, F. Sabetzadeh, Energy and area efficient imprecise compressors for approximate multiplication at nanoscale. AEU Int. J. Electron. Commun. 110, 152859 (2019). https://doi.org/10.1016/j.aeue.2019.152859

    Article  Google Scholar 

  2. O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, Dual-quality 4:2 compressors for utilizing in dynamic accuracy configurable multipliers. IEEE Trans. Very Large Scale Integr. Syst. 25(4), 1352–1361 (2017). https://doi.org/10.1109/TVLSI.2016.2643003

    Article  Google Scholar 

  3. M.S. Ansari, H. Jiang, B.F. Cockburn, J. Han, Low-power approximate multipliers using encoded partial products and approximate compressors. IEEE J. Emerg. Sel. Top. Circuits Syst. 8(3), 404–416 (2018). https://doi.org/10.1109/JETCAS.2018.2832204

    Article  Google Scholar 

  4. P.J. Edavoor, S. Raveendran, A.D. Rahulkar, Approximate multiplier design using novel dual-stage 4:2 compressors. IEEE Access. 8, 48337–48351 (2020). https://doi.org/10.1109/ACCESS.2020.2978773

    Article  Google Scholar 

  5. D. Esposito, A.G.M. Strollo, E. Napoli, D.D. Caro, N. Petra, Approximate multipliers based on new approximate compressors. IEEE Trans. Circuits Syst. I Regul. Pap. 65(12), 4169–4182 (2018). https://doi.org/10.1109/TCSI.2018.2839266

    Article  Google Scholar 

  6. C. Fritz, A.T. Fam, Fast binary counters based on symmetric stacking. IEEE Trans. Very Large Scale Integr. Syst. 25(10), 2971–2975 (2017). https://doi.org/10.1109/TVLSI.2017.2723475

    Article  Google Scholar 

  7. A. Gorantla, P. Deepa, Design of approximate compressors for multiplication. J. Emerg. Technol. Comput. Syst. (JETC). 13(3), 1–17 (2017). https://doi.org/10.1145/3007649

    Article  Google Scholar 

  8. M. Ha, S. Lee, Multipliers with approximate 4–2 compressors and error recovery modules. IEEE Embed. Syst. Lett. 10(1), 6–9 (2018). https://doi.org/10.1109/LES.2017.2746084

    Article  Google Scholar 

  9. A. Hore, D. Ziou, Image quality metrics: PSNR versus SSIM, in 2010 20th International Conference on Pattern Recognition (ICPR), pp. 2366–2369 (2010)

  10. J. Liang, J. Han, F. Lombardi, New metrics for the reliability of approximate and probabilistic adders. IEEE Trans. Comput. 62(9), 1760–1771 (2013). https://doi.org/10.1109/TC.2012.146

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Lin, I. Lin, High accuracy approximate multiplier with error correction, in 2013 IEEE 31st International Conference on Computer Design (ICCD), pp. 33–38 (2013)

  12. W. Liu, C. Gu, G. Qu, M. O'Neill, Approximate computing and its application to hardware security, in Cyber-Physical Systems Security, Springer, pp. 43–67 (2018)

  13. S. Mittal, A survey of techniques for approximate computing. ACM Comput. Surv. 48(4), 1–33 (2016). https://doi.org/10.1145/2893356

    Article  Google Scholar 

  14. A. Momeni, J. Han, P. Montuschi, F. Lombardi, Design and analysis of approximate compressors for multiplication. IEEE Trans. Comput. 64(4), 984–994 (2015). https://doi.org/10.1109/TC.2014.2308214

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Mrazek, R. Hrbacek, Z. Vasicek, L. Sekanina, EvoApproxSb: library of approximate adders and multipliers for circuit design and benchmarking of approximation methods, in Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 258–261 (2017)

  16. V. Mrazek, Z. Vasicek, L. Sekanina, H. Jiang, J. Han, Scalable construction of approximate multipliers with formally guaranteed worst case error. IEEE Trans. Very Large Scale Integr. Syst. 26(11), 2572–2576 (2018). https://doi.org/10.1109/TVLSI.2018.2856362

    Article  Google Scholar 

  17. H. Naseri, S. Timarchi, Low-power and fast full adder by exploring new XOR and XNOR gates. IEEE Trans. Very Large Scale Integr. Syst. 26(8), 1481–1493 (2018). https://doi.org/10.1109/TVLSI.2018.2820999

    Article  Google Scholar 

  18. B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs (Oxford University Press, Inc., 2000)

  19. M. Pashaeifar, M. Kamal, A. Afzali-Kusha, M. Pedram, Approximate reverse carry propagate adder for energy-efficient DSP applications. IEEE Trans. Very Large Scale Integr. Syst. 26(11), 1–12 (2018). https://doi.org/10.1109/TVLSI.2018.2859939

    Article  Google Scholar 

  20. J. Rabaey, Low Power Design Essentials (Springer, New York, 2009)

    Book  Google Scholar 

  21. F. Sabetzadeh, M.H. Moaiyeri, M. Ahmadinejad, A Majority-based imprecise multiplier for ultra-efficient approximate image multiplication. IEEE Trans. Circuits Syst. I Regul. Pap. 66(11), 4200–4208 (2019). https://doi.org/10.1109/TCSI.2019.2918241

    Article  Google Scholar 

  22. A. Shabani, S. Timarchi, Low-power DCT-based compressor for wireless capsule endoscopy. Signal Process. Image Commun. 59, 83–95 (2017). https://doi.org/10.1016/j.image.2017.03.003

    Article  Google Scholar 

  23. Sipi.usc.edu. SIPI image database (2016). http://sipi.usc.edu/database/

  24. L.B. Soares, M.M.A. Rosa, C.M. Diniz, E.A.C.D. Costa, S. Bampi, Design methodology to explore hybrid approximate adders for energy-efficient image and video processing accelerators. IEEE Trans. Circuits Syst. I Regular Pap. 66(6), 2137–2150 (2019). https://doi.org/10.1109/TCSI.2019.2892588

    Article  Google Scholar 

  25. A.G.M. Strollo, E. Napoli, D.D. Caro, N. Petra, G.D. Meo, Comparison and extension of approximate 4–2 compressors for low-power approximate multipliers. IEEE Trans. Circuits Syst. I Regul. Pap. 67(9), 3021–3034 (2020). https://doi.org/10.1109/TCSI.2020.2988353

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Sze, Y. Chen, T. Yang, J.S. Emer, Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE. 105(12), 2295–2329 (2017). https://doi.org/10.1109/JPROC.2017.2761740

    Article  Google Scholar 

  27. S. Timarchi, N. Akbarzadeh, Area-time-power efficient maximally redundant signed-digit modulo 2n–1 adder and multiplier. Circuits Syst. Signal Process. 38(5), 2138–2164 (2019). https://doi.org/10.1007/s00034-018-0957-7

    Article  Google Scholar 

  28. S. Timarchi, M. Alioto, Ultra-low voltage standard cell libraries: design strategies and a case study, in 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 520–523 (2016)

  29. S. Venkatachalam, S.B. Ko, Design of power and area efficient approximate multipliers. IEEE Trans. Very Large Scale Integr. Syst. 25(5), 1782–1786 (2017). https://doi.org/10.1109/TVLSI.2016.2643639

    Article  Google Scholar 

  30. Z. Yang, J. Han, F. Lombardi, Approximate compressors for error-resilient multiplier design, in Proceedings of IEEE International Symposium on Defect and Fault Tolerance in VLSI and (DFTS), pp. 183–186 (2015)

  31. P. Yin, C. Wang, W. Liu, E.E. Swartzlander, F. Lombardi, Designs of approximate floating-point multipliers with variable accuracy for error-tolerant applications. J. Signal Process. Syst. 90(4), 641–654 (2018). https://doi.org/10.1007/s11265-017-1280-4

    Article  Google Scholar 

  32. W. Zhou, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Timarchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejtahed, S.A.H., Timarchi, S. Efficient Approximate Multiplier Based on a New 1-Gate Approximate Compressor. Circuits Syst Signal Process 41, 2699–2718 (2022). https://doi.org/10.1007/s00034-021-01902-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01902-7

Keywords

Navigation