Skip to main content
Log in

A Class of Diffusion Proportionate Subband Adaptive Filters for Sparse System Identification over Distributed Networks

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper aims to extend the proportionate adaptation concept to the design of a class of diffusion normalized subband adaptive filter (DNSAF) algorithms. This leads to four extensions of the algorithm associated with different step-size variations, namely diffusion proportionate normalized subband adaptive filter (DPNSAF), diffusion \(\mu \)-law PNSAF (DMPNSAF), diffusion improved PNSAF (DIPNSAF) and diffusion improved IPNSAF (DIIPNSAF). Subsequently, steady-state performance, stability conditions and computational complexity of the proposed algorithms are investigated. For each extension the performance has been evaluated using both real and simulated data, where the outcomes demonstrate the accuracy of the theoretical expressions and effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets (radio channel coefficients) analyzed during the current study are available in http://spib.linse.ufsc.br/microwave.html.

Notes

  1. The employed radio channel coefficients are available in http://spib.linse.ufsc.br/microwave.html.

References

  1. W.U. Bajwa, J. Haupt, G. Raz, R. Nowak, Compressed channel sensing. pp. 5–10 (2008)

  2. W.U. Bajwa, J. Haupt, A.M. Sayeed, R. Nowak, Compressed channel sensing: a new approach to estimating sparse multipath channels. Proc. IEEE 98(6), 1058–1076 (2010)

    Article  Google Scholar 

  3. J.A. Bazerque, G.B. Giannakis, Distributed spectrum sensing for cognitive radio networks by exploiting sparsity. IEEE Trans. Signal Process. 58(3), 1847–1862 (2010)

    Article  MathSciNet  Google Scholar 

  4. J. Benesty, S.L. Gay, An improved PNLMS algorithm, in 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. II–1881–II–1884 (2002)

  5. C.R. Berger, S. Zhou, J.C. Preisig, P. Willett, Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing. IEEE Trans. Signal Process. 58(3), 1708–1721 (2010)

    Article  MathSciNet  Google Scholar 

  6. V.D. Blondel, J.M. Hendrickx, A. Olshevsky, J.N. Tsitsiklis, Convergence in multiagent coordination, consensus, and flocking, in Proceedings of the 44th IEEE Conference on Decision and Control, pp. 2996–3000(2005)

  7. F.S. Cattivelli, C.G. Lopes, A.H. Sayed, Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 56(5), 1865–1877 (2008)

    Article  MathSciNet  Google Scholar 

  8. F.S. Cattivelli, A.H. Sayed, Diffusion lms strategies for distributed estimation. IEEE Trans. Signal Process. 58(3), 1035–1048 (2010)

    Article  MathSciNet  Google Scholar 

  9. J. Chen, A.H. Sayed, Diffusion adaptation strategies for distributed optimization and learning over networks. IEEE Trans. Signal Process. 60(8), 4289–4305 (2012)

    Article  MathSciNet  Google Scholar 

  10. Y. Chu, C. Mak, A variable forgetting factor diffusion recursive least squares algorithm for distributed estimation. Signal Process. 140, 219–225 (2017)

    Article  Google Scholar 

  11. M. De. Courville, P. Duhamel, Adaptive filtering in subbands using a weighted criterion. IEEE Trans. Signal Process. 46(9), 2359–2371 (1998)

    Article  Google Scholar 

  12. D.L. Duttweiler, Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Trans. Speech Audio Process. 8(5), 508–518 (2000a)

    Article  Google Scholar 

  13. D.L. Duttweiler, Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Trans. Speech Audio Process. 8(5), 508–518 (2000b)

    Article  Google Scholar 

  14. V.C. Gogineni, M. Chakraborty, Improving the performance of multitask diffusion apa via controlled inter-cluster cooperation. IEEE Trans. Circuits Syst. I: Regul. Pap. 67(3), 903–912 (2020)

    Article  MathSciNet  Google Scholar 

  15. M. Hongyang Deng, Doroslovacki, Proportionate adaptive algorithms for network echo cancellation. IEEE Trans. Signal Process. 54(5), 1794–1803 (2006)

    Article  Google Scholar 

  16. L. Hu, F. Chen, S. Duan, L. Wang, J. Wu, An Improved Diffusion Affine Projection Estimation Algorithm for Wireless Sensor Networks Systems, and Signal Processing, Circuits (2019)

  17. Y. Huang, J. Benesty, J. Chen, Acoustic MIMO Signal Processing (Signals and Communication Technology) (Springer-Verlag, Berlin, 2006)

    Book  Google Scholar 

  18. R. Kukde, M.S. Manikandan, G. Panda, Incremental learning based adaptive filter for nonlinear distributed active noise control system. IEEE Open J. Signal Process. 1, 1–13 (2020)

    Article  Google Scholar 

  19. K.A. Lee, W.S. Gan, Improving convergence of the NLMS algorithm using constrained subband updates. IEEE Signal Process. Lett. 11(9), 736–739 (2004)

    Article  Google Scholar 

  20. X. Liu, X. Gao, J. Han, Distributed fault estimation for a class of nonlinear multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 1–9 (2018)

  21. C.G. Lopes, A.H. Sayed, Diffusion least-mean squares over adaptive networks, in 2007 IEEE International Conference on Acoustics, Speech and Signal Processing: ICASSP ’07, vol. 3, pp. III–917–III–920 (2007a)

  22. C.G. Lopes, A.H. Sayed, Incremental adaptive strategies over distributed networks. IEEE Trans. Signal Process. 55(8), 4064–4077 (2007b)

    Article  MathSciNet  Google Scholar 

  23. C.G. Lopes, A.H. Sayed, Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans. Signal Process. 56(7), 3122–3136 (2008)

    Article  MathSciNet  Google Scholar 

  24. Z. Luo, H. Zhao, X. Zeng, A class of diffusion zero attracting stochastic gradient algorithms with exponentiated error cost functions. IEEE Access 8, 4885–4894 (2020)

    Article  Google Scholar 

  25. H. Malvar, Extended lapped transforms: properties, applications, and fast algorithms. IEEE Trans. Signal Process. 40(11), 2703–2714 (1992)

    Article  Google Scholar 

  26. P.A. Naylor, J. Cui, M. Brookes, Adaptive algorithms for sparse echo cancellation. Signal Process. Appl. Speech Audio Process. 86(6), 1182–1192 (2006)

    MATH  Google Scholar 

  27. J. Ni, Diffusion sign subband adaptive filtering algorithm for distributed estimation. IEEE Signal Process. Lett. 22(11), 2029–2033 (2015)

    Article  Google Scholar 

  28. R. Olfati-Saber, J.S. Shamma, Consensus filters for sensor networks and distributed sensor fusion, in Proceedings of the 44th IEEE Conference on Decision and Control, pp. 6698–6703 (2005)

  29. S. Ozen, W. Hillery, M. Zoltowski, S.M. Nereyanuru, M. Fimoff, Structured channel estimation based decision feedback equalizers for sparse multipath channels with applications to digital tv receivers, in Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002., vol. 1, pp. 558–564 vol.1 (2002)

  30. C. Paleologu, J. Benesty, S. Ciochina, Sparse Adaptive Filters for Echo Cancellation, (2011)

  31. A.H. Sayed, Adaptation, learning, and optimization over networks. Found. Trends Mach. Learn. 7(4–5), 311–801 (2014)

    Article  Google Scholar 

  32. J.-H. Seo, S.M. Jung, P. Park, A diffusion subband adaptive filtering algorithm for distributed estimation using variable step size and new combination method based on the MSD. Digital Signal Process. 48, 361–369 (2016)

    Article  MathSciNet  Google Scholar 

  33. M. Shams Esfand Abadi, M.S. Shafiee, A family of diffusion normalized subband adaptive filter algorithms over distributed networks. Int. J. Commun. Syst. 30(17), e3348 (2017)

    Article  Google Scholar 

  34. J.J. Shynk, Frequency-domain and multirate adaptive filtering. IEEE Signal Process. Mag. 9(1), 14–37 (1992)

    Article  Google Scholar 

  35. S. Tu, A.H. Sayed, Diffusion strategies outperform consensus strategies for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 60(12), 6217–6234 (2012)

    Article  MathSciNet  Google Scholar 

  36. S. Vlaski, A.H. Sayed, Diffusion learning in non-convex environments, in ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5262–5266 (2019)

  37. W. Wang, H. Zhao, Performance analysis of diffusion least mean fourth algorithm over network. Signal Process. 141, 32–47 (2017)

    Article  Google Scholar 

  38. W. Xia, Y. Wang, A variable step-size diffusion LMS algorithm over networks with noisy links. Signal Process. 148(C), 205–213 (2018)

    Article  Google Scholar 

  39. Y. Xia, S. Su, H. Su, X. Zhang, W. Luo, W. Yang, Detection of data integrity attacks in distributed state estimation. IEEE Trans. Syst. Man Cybern. Syst. 1–10 (2020)

  40. L. Xiao, S. Boyd, Fast linear iterations for distributed averaging. Syst. Control Lett. 53(1), 65–78 (2004)

    Article  MathSciNet  Google Scholar 

  41. L. Xiao, S. Boyd, S. Lall, A scheme for robust distributed sensor fusion based on average consensus, in IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks 2005, pp. 63–70 (2005a)

  42. L. Xiao, S. Boyd, S. Lall, A scheme for robust distributed sensor fusion based on average consensus, in IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks 2005, pp. 63–70 (2005b)

  43. K. Xie, Q. Cai, Z. Zhang, M. Fu, Distributed algorithms for average consensus of input data with fast convergence. IEEE Trans. Syst. Man Cybern. Syst. 1–12 (2019)

  44. S. Zhang, H.C. So, W. Mi, H. Han, A family of adaptive decorrelation NLMS algorithms and its diffusion version over adaptive networks. IEEE Trans. Circuits Syst. I Regul. Pap. 65(2), 638–649 (2018)

    Article  Google Scholar 

  45. X. Zhao, A.H. Sayed, Performance limits for distributed estimation over LMS adaptive networks. IEEE Trans. Signal Process. 60(10), 5107–5124 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Rastegarnia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouradabi, A., Rastegarnia, A., Zandi, S. et al. A Class of Diffusion Proportionate Subband Adaptive Filters for Sparse System Identification over Distributed Networks. Circuits Syst Signal Process 40, 6242–6264 (2021). https://doi.org/10.1007/s00034-021-01766-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01766-x

Keywords

Navigation