Skip to main content
Log in

Order Abatement of Linear Dynamic Systems Using Renovated Pole Clustering and Cauer Second Form Techniques

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A mixed-method for the order abatement of large-scale linear dynamic systems (LSLDSs) into desired low order systems is proposed. The denominator of the abated system (AS) is obtained by the renovated pole clustering technique, while the numerator is obtained by Cauer second form technique. The AS is stable if the original system (OS) is stable and retains all the essential time and frequency response specifications of the OS. The proposed mixed method is an improved version of the modified pole clustering technique. As we know, the magnitude of the pole cluster center plays an important role in the clustering technique for the abatement of LSLDS. Less magnitude of pole cluster center, better approximations matching of AS with the OS has occurred. The magnitude of dominated pole cluster centers obtained by the modified pole clustering technique or other pole clustering techniques is large compared to the proposed technique. Hence the proposed technique provides better approximations matching between OS and AS during the transient period compared to other clustering techniques, which supports the replacement of OS with better AS. The efficacy of the proposed technique is verified by taking three numerical examples and compared with other recent and famous techniques available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figure 2
Figure 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. A. Aggarwal, M. Kumar, T.K. Rawat, D.K. Upadhyay, Optimal design of 2D FIR filters with quadrantally symmetric properties using fractional derivative constraints. Circuits Syst. Signal Process. 35(6), 2213–2257 (2016). https://doi.org/10.1007/s00034-016-0283-x

    Article  MATH  Google Scholar 

  2. A. Arbi, Y. Guo, J. Cao, Convergence analysis on time scales for HOBAM neural networks in the Stepanov-like weighted pseudo almost automorphic space. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-05183-0

    Article  Google Scholar 

  3. A. Arbi, Dynamics of BAM neural networks with mixed delays and leakage time-varying delays in the weighted pseudo–almost periodic on time-space scales. Math. Methods Appl. Sci. 41(3), 1230–1255 (2018). https://doi.org/10.1002/mma.4661

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Arbi, J. Cao, A. Alsaedi, Improved synchronization analysis of competitive neural networks with time-varying delays. Nonlinear Anal. Model. Control 23(1), 82–102 (2018). https://doi.org/10.15388/NA.2018.1.7

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Arbi, J. Cao, Pseudo-almost periodic solution on time-space scales for a novel class of competitive neutral-type neural networks with mixed time-varying delays and leakage delays. Neural Process. Lett. 46(2), 719–745 (2017). https://doi.org/10.1007/s11063-017-9620-8

    Article  Google Scholar 

  6. Y. Bistritz, U. Shaked, Minimal Pade model reduction for multivariable systems. Trans. ASME, J. Dyn. Syst. Meas. Control 106, 293–299 (1984)

    Article  Google Scholar 

  7. R. Eid, B. Lohmann, Moment matching model order reduction in time domain via Laguerre series. Int. Fed. Autom. Control 41(2), 3198–3203 (2008). https://doi.org/10.3182/20080706-5-kr-1001.00543

    Article  Google Scholar 

  8. M. Hund, J. Saak, A connection between time domain model order reduction and moment matching for LTI systems. Math. Comput. Model. Dyn. Syst. 24(5), 455–484 (2018). https://doi.org/10.1080/13873954.2018.1488742

    Article  MathSciNet  Google Scholar 

  9. V. Krishnamurthy, V. Seshadri, Model reduction using the Routh stability criterion. IEEE Trans. Autom. Control AC 23(4), 729–731 (1978). https://doi.org/10.1109/TAC.1978.1101805

    Article  Google Scholar 

  10. M. Kumar, T.K. Rawat, A. Aggarwal, Adaptive infinite impulse response system identification using modified-interior search algorithm with Lèvy flight. ISA Trans. 67, 266–279 (2017). https://doi.org/10.1016/j.isatra.2016.10.018

    Article  Google Scholar 

  11. M. Kumar, A. Aggarwal, T.K. Rawat, Bat algorithm: application to adaptive infinite impulse response system identification. Arab. J. Sci. Eng. 41(9), 3587–3604 (2016). https://doi.org/10.1007/s13369-016-2222-3

    Article  Google Scholar 

  12. M. Kumar, A. Aggarwal, T.K. Rawat, H. Parthasarathi, Optimal nonlinear system identification using fractional delay second-order volterra system. IEEE/CAA J. Autom. Sin. 10, 1–17 (2016). https://doi.org/10.1109/JAS.2016.7510184

    Article  Google Scholar 

  13. A.K. Mittal, R. Prasad, S.P. Sharma, Reduction of linear dynamic systems using an error minimization, technique. J. Inst. Eng. India 84, 201–206 (2004)

    Google Scholar 

  14. S. Mukherjee, S. Singh, R.C. Mittal, Model order reduction using response-matching technique. J. Frankl. Inst. 342(5), 503–519 (2005). https://doi.org/10.1016/j.jfranklin.2005.01.008

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Pal, A.K. Sinha, N.K. Sinha, Reduced order modelling using pole-clustering and time-moment matching. J. Inst. Eng. Electr. Eng. Div. 76, 1–6 (1995)

    Google Scholar 

  16. G. Parmar, R. Prasad, S. Mukherjee, Order reduction of linear dynamic systems using stability equation method and GA. Int. J. Comput. Inf. Syst. Sci. Eng. 1(1), 26–32 (2007)

    Google Scholar 

  17. G. Parmar, R. Prasad, S. Mukherjee, A mixed method for large-scale systems modelling using eigen spectrum analysis and Cauer second form. IETE J. Res. 53(2), 93–102 (2007). https://doi.org/10.1080/03772063.2007.10876125

    Article  Google Scholar 

  18. G. Parmar, S. Mukherjee, R. Prasad, System reduction using factor division algorithm and eigen spectrum analysis. Appl. Math. Model. 31(11), 2542–2552 (2007). https://doi.org/10.1016/j.apm.2006.10.004

    Article  MATH  Google Scholar 

  19. A.K. Prajapati, R. Prasad, Order reduction in linear dynamical systems by using improved balanced realization technique. Circuits Syst. Signal Process. 38(11), 5289–5303 (2019). https://doi.org/10.1007/s00034-019-01109-x

    Article  Google Scholar 

  20. A.K. Prajapati, R. Prasad, Reduced-order modelling of lti systems by using Routh approximation and factor division methods. Circuits Syst. Signal Process. 38(7), 3340–3355 (2019). https://doi.org/10.1007/s00034-018-1010-6

    Article  Google Scholar 

  21. R. Prasad, J. Pal, Stable reduction of linear systems by continued fractions’. J. Inst. Eng. IE 72, 113–116 (1991)

    Google Scholar 

  22. R. Prasad, J. Pal, A.K. Pant, Multivariable System approximation using polynomial derivatives. J. Inst. Eng. 76, 186–188 (1995)

    Google Scholar 

  23. R. Prasad, Pade type model order reduction for multivariable systems using Routh approximation. Comput. Electr. Eng. 26(6), 445–459 (2000). https://doi.org/10.1016/S0045-7906(00)00002-1

    Article  MATH  Google Scholar 

  24. R. Prasad, J. Pal, Use of continued fraction expansion for stable reduction of linear multivariable systems. J. Inst. Eng. 72, 43–47 (1991)

    Google Scholar 

  25. Z. Sabir, S. Saoud, M.A.Z. Raja, H.A. Wahab, A. Arbi, Heuristic computing technique for numerical solutions of nonlinear fourth order Emden-Fowler equation. Math. Comput. Simul. 178, 534–548 (2020). https://doi.org/10.1016/j.matcom.2020.06.021

    Article  MathSciNet  MATH  Google Scholar 

  26. M.G. Safonov, R.Y. Chiang, Model reduction for robust control: A Schur relative error method. Int. J. Adapt. Control Signal Process. 2, 259–272 (1988)

    Article  Google Scholar 

  27. Y. Shamash, Linear system reduction using Pade approximation to allow retention of dominant modes. Int. J. Control. 21(2), 257–272 (1975). https://doi.org/10.1080/00207177508921985

    Article  MATH  Google Scholar 

  28. Y. Shamash, Model reduction using minimal realization algorithms. Electron. Lett. 11(16), 385–387 (1975). https://doi.org/10.1049/el:19750293

    Article  Google Scholar 

  29. J. Singh, K. Chatterjee, C.B. Vishwakarma, Reduced order modelling of linear dynamic systems. ASME J. Ser. Adv. 30, 71–85 (2015)

    Google Scholar 

  30. J. Singh, C.B. Vishwakarma, K. Chatterjee, Biased reduction method by combining improved modified pole clustering and improved Pade approximations. Appl. Math. Model. 40(2), 1418–1426 (2016). https://doi.org/10.1016/j.apm.2015.07.014

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Singh, A. Ashok, M. Kumar, T.K. Rawat, Adaptive infinite impulse response system identification using teacher learner based optimization algorithm. Appl. Intell. 49(5), 1785–1802 (2019). https://doi.org/10.1007/s10489-018-1354-4

    Article  Google Scholar 

  32. A.K. Sinha, J. Pal, Simulation based reduced order modelling using a clustering technique. Comput. Electr. Eng. 16(3), 159–169 (1990). https://doi.org/10.1016/0045-7906(90)90020-G

    Article  Google Scholar 

  33. I.D. Smith, T.N. Lucas, Least-squares moment matching reduction methods. Electron. Lett. 31(11), 929–930 (1995). https://doi.org/10.1049/el:19950585

    Article  Google Scholar 

  34. S.K. Tiwari, G. Kaur, Improved reduced-order modeling using clustering method with dominant pole retention. IETE J. Res. 66(1), 42–52 (2020). https://doi.org/10.1080/03772063.2018.1465365

    Article  Google Scholar 

  35. S.K. Tiwari, G. Kaur, Model reduction by new clustering method and frequency response matching. J. Control. Autom. Electr. Syst. 28(1), 78–85 (2017). https://doi.org/10.1007/s40313-016-0282-y

    Article  Google Scholar 

  36. C.B. Vishwakarma, Order reduction using modified pole clustering and Pade approximations. World Acad. Sci. Eng. Technol. 80(8), 787–791 (2011)

    Google Scholar 

  37. C.B. Vishwakarma, Simplification of MIMO dynamic systems using differentiation and Cauer second form. Int. J. Comput. Sci. Eng. 7(6), 1088–1091 (2019). https://doi.org/10.26438/ijcse/v7i6.10881091

    Article  Google Scholar 

  38. C.B. Vishwakarma, R. Prasad, MIMO system reduction using modified pole clustering and genetic algorithm. Model. Simul. Eng. (2009). https://doi.org/10.1155/2009/540895

    Article  Google Scholar 

  39. C.B. Vishwakarma, R. Prasad, Time domain model order reduction using Hankel matrix approach. J. Frankl. Inst. 351(6), 3445–3456 (2014). https://doi.org/10.1016/j.jfranklin.2014.02.005

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abha Kumari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Vishwakarma, C.B. Order Abatement of Linear Dynamic Systems Using Renovated Pole Clustering and Cauer Second Form Techniques. Circuits Syst Signal Process 40, 4212–4229 (2021). https://doi.org/10.1007/s00034-021-01673-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01673-1

Keywords

Navigation