Skip to main content
Log in

Sound Quality Improvement for Hearing Aids in Presence of Multiple Inputs

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Modern-day hearing aids are capable of receiving acoustic signals over a wireless link and also from the surroundings through the microphone. If the hearing aid receives input only from the acoustic environment, feedback cancellation proceeds according to the existing methodologies for bias reduction. However, the wirelessly received signal and the acoustic environment input, when emitted from the same source, can be very similar to each other or with a time-delayed version of each other, thereby having a high correlation between them. Both inputs can also be emitted from different sources and, thus, be less correlated with each other. In the aforementioned scenarios, acoustic confusion can occur for the user as the hearing aid receives both signals simultaneously. To improve the output signal quality and to reduce bias in an adaptive feedback cancellation system with a wirelessly received signal as well as an acoustic environment input, we propose a cost function, and the optimization of the feed-forward path and of the shaping filter for the wireless signal. The feed-forward path is designed to be a cascade of the required acoustic enhancement along with an FIR filter. We derive expressions for an optimum shaping filter and for an optimized feed-forward path. Improvement in loudspeaker output signal quality, normalized misalignment and maximum stable gain for each of the above-mentioned scenarios is assessed through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The hearing aid considered in this work is a single-microphone system that receives one acoustic signal through the microphone and another through a wireless link.

References

  1. A. Anand, A. Kar, M.N.S. Swamy, Design and analysis of a BLPC vocoder-based adaptive feedback cancellation with probe noise. Appl. Acoust. 115, 196–208 (2017). https://doi.org/10.1016/j.apacoust.2016.08.023

    Article  Google Scholar 

  2. L. Bramslow, An objective estimate of the perceived quality of reproduced sound in normal and impaired hearing. Acta Acust. United Acust. 90, 1007–1018 (2004)

    Google Scholar 

  3. D.K. Bustamante, T.L. Worrall, M.J. Williamson, Measurement and adaptive suppression of acoustic feedback in hearing aids, in International Conference on Acoustics, Speech, and Signal Processing, 1989. ICASSP-89, vol. 3, pp. 2017–2020 (1989). https://doi.org/10.1109/ICASSP.1989.266855

  4. H.F. Chi, S.X. Gao, S.D. Soli, A. Alwan, Band-limited feedback cancellation with a modified filtered-X LMS algorithm for hearing aids. Speech Commun. 39(1), 147–161 (2003). https://doi.org/10.1016/S0167-6393(02)00064-X

    Article  MATH  Google Scholar 

  5. H. Dillon, Hearing Aids (Boomerang Press, Turramurra, 2012)

    Google Scholar 

  6. J.E. Greenberg, P.M. Zurek, M. Brantley, Evaluation of feedback-reduction algorithms for hearing aids. J. Acoust. Soc. Am. 108(5), 2366–2376 (2000). https://doi.org/10.1121/1.1316095

    Article  Google Scholar 

  7. M. Guo, Analysis, design, and evaluation of acoustic feedback cancellation systems for hearing aids. Ph.D dissertation, Department of Electronic Systems, Aalborg University (2012)

  8. M. Guo, T. Elmedyb, S.H. Jensen, J. Jensen, On acoustic feedback cancellation using probe noise in multiple-microphone and single-loudspeaker systems. IEEE Signal Process. Lett. 19(5), 283–286 (2012)

    Article  MATH  Google Scholar 

  9. M. Guo, S.H. Jensen, J. Jensen, Novel acoustic feedback cancellation approaches in hearing aid applications using probe noise and probe noise enhancement. IEEE Trans. Audio Speech Lang. Process. 20(9), 2549–2563 (2012)

    Article  Google Scholar 

  10. ITU, Perceptual Evaluation of Speech Quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs - P.862 (2001)

  11. ITU-T, Methods for subjective determination of transmission quality. rec. P.800 (1996)

  12. P.C. Loizou, Speech Enhancement: Theory and Practice (CRC Press, Boca Raton, 2013)

    Book  Google Scholar 

  13. J.A. Maxwell, P.M. Zurek, Reducing acoustic feedback in hearing aids. IEEE Trans. Speech Audio Process. 3(4), 304–313 (1995). https://doi.org/10.1109/89.397095

    Article  Google Scholar 

  14. C.R.C. Nakagawa, Control of feedback for assistive listening devices. Ph.D. dissertation, School of Electrical and Computer Engineering, Curtin University (2014)

  15. C.R.C. Nakagawa, S. Nordholm, W.Y. Yan, Analysis of two microphone method for feedback cancellation. IEEE Signal Process. Lett. 22(1), 35–39 (2015)

    Article  Google Scholar 

  16. C.R.C. Nakagawa, S. Nordholm, W.Y. Yan, New insights into optimal acoustic feedback cancellation. IEEE Signal Process. Lett. 20(9), 869–872 (2013)

    Article  Google Scholar 

  17. T. Painter, A. Spanias, Perceptual coding of digital audio. Proc. IEEE 88(4), 451–515 (2000). https://doi.org/10.1109/5.842996

    Article  Google Scholar 

  18. A. Spriet, I. Proudler, M. Moonen, J. Wouters, Adaptive feedback cancellation in hearing aids with linear prediction of the desired signal. IEEE Trans. Signal Process. 53(10), 3749–3763 (2005). https://doi.org/10.1109/TSP.2005.855108

    Article  MathSciNet  MATH  Google Scholar 

  19. T. van Waterschoot, M. Moonen, Fifty years of acoustic feedback control: state of the art and future challenges. Proc. IEEE 99(2), 288–327 (2011). https://doi.org/10.1109/JPROC.2010.2090998

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the European Union’s Seventh Framework Programme (FP7/2007-2013) under the Grant agreement number ITN-GA-2012-316969. The authors would like to thank Prof. Toon van Waterschoot (KU Leuven, Belgium) for his valuable suggestions throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asutosh Kar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

1.1 Proof of Lemma 1

Proof

: Considering Assumptions 12 and Definitions 12, (3) can be rewritten as

$$\begin{aligned} {c_1}(n) = {\bar{r}}(n) - x(n). \end{aligned}$$
(A.1)

Then, the respective cost function in this scenario is expressed as

$$\begin{aligned} E\left[ {{c_1}^2\left( n \right) } \right]&= E\left[ {{{\left( {{\bar{r}}(n) - x(n)} \right) }^2}} \right] \nonumber \\&= E\left[ {{{{\bar{r}}}^{2}}(n)} \right] - 2\,E\left[ {{\bar{r}}(n)\,\,x(n)} \right] + E\left[ {{x^2}(n)} \right] . \end{aligned}$$
(A.2)

The optimization problem for this scenario can be obtained by rewriting (4) for (A.2) as

$$\begin{aligned} {\varvec{s^{*}}}= {\texttt {argmin}}_{{\varvec{s}}}\,\,E\big [{c_{1}}^{2}\left( n\right) \big ]. \end{aligned}$$
(A.3)

Substituting (2) in (A.2), we have

$$\begin{aligned} E\left[ {{c_1}^2\left( n \right) } \right]&={\alpha ^2}\,{\mathbf{{s}}^T}(n)\,\mathbf{{h}}\left( n \right) E\left[ {{x^2}\left( n \right) } \right] {\mathbf{{h}}^T}\left( n \right) \,\mathbf{{s}}\left( n \right) \nonumber \\&\quad + \alpha \left( {1 - \alpha } \right) {\mathbf{{s}}^T}(n)\mathbf{{h}}\left( n \right) E\left[ {x\left( n \right) {{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s}}\left( n \right) \nonumber \\&\quad + \alpha \left( {1 - \alpha } \right) \,{\mathbf{{s}}^T}(n)E\left[ {{{\varvec{\zeta }}}\left( n \right) \,x\left( n \right) } \right] {\mathbf{{h}}^T}\left( n \right) \mathbf{{s}}\left( n \right) \nonumber \\&\quad + {\left( {1 - \alpha } \right) ^2}{\mathbf{{s}}^T}(n)\,E\left[ {{{\varvec{\zeta }}}\left( n \right) \,{{{\varvec{\zeta }}}^T}\left( n \right) } \right] \,\mathbf{{s}}\left( n \right) - 2\alpha \,{\mathbf{{s}}^T}(n)\,\mathbf{{h}}\left( n \right) E\left[ {{x^2}\left( n \right) } \right] \nonumber \\&\quad - 2\left( {1 - \alpha } \right) {\mathbf{{s}}^T}(n)E\left[ {{{\varvec{\zeta }}}\left( n \right) x\left( n \right) } \right] +E\left[ {{x^2}\left( n \right) } \right] \nonumber \\&= {\alpha ^2}\,{\mathbf{{s}}^T}(n)\,\mathbf{{h}}\left( n \right) \,{r_{xx}}\left( n \right) \,{\mathbf{{h}}^T}\left( n \right) \,\mathbf{{s}}\left( n \right) + {\left( {1 - \alpha } \right) ^2}{\mathbf{{s}}^T}(n)\,\mathbf{{R}}\left( n \right) \,\mathbf{{s}}\left( n \right) \nonumber \\&\quad - 2\alpha \,{\mathbf{{s}}^T}(n)\,\mathbf{{h}}\left( n \right) {r_{xx}}\left( n \right) + {r_{xx}}\left( n \right) . \end{aligned}$$
(A.4)

Minimizing the cost function in (A.4) by taking the derivative with respect to the shaping filter coefficients \({s_{_i}}\left( n \right) ,i = 0,1,\ldots ,M - 1\) and equating to zero, we have

$$\begin{aligned} 2\,{\alpha ^2}\,\mathbf{{h}}\left( n \right) {r_{xx}}\left( n \right) {\mathbf{{h}}^T}\left( n \right) \mathbf{{s^{*}}}\left( n \right) + 2\,{\left( {1 - \alpha } \right) ^2}\,\mathbf{{R}}\left( n \right) \mathbf{{s^{*}}}\left( n \right) - 2\,\alpha \,\mathbf{{h}}\left( n \right) {r_{xx}}\left( n \right) = 0. \end{aligned}$$
(A.5)

Simplifying (A.5), we obtain (5), where \(\mathbf{{s^{*}}}\left( n \right) = \big [ s^{*}\left( n \right) ,s^{*}\left( {n - 1} \right) ,\ldots ,s^{*}( n - M + 1 ) \big ]^T\) such that \(\mathbf{{s^{*}}}\left( n \right) \in {\mathbb {R}}^{M\times 1}\) represent the solution to the optimization problem in (A.3). \(\square \)

1.2 Proof of Lemma 2

Proof

: The signal difference expressed in (3) can be rewritten for this scenario as

$$\begin{aligned} {c_2}(n) = {\bar{u}}\left( n \right) - x\left( n \right) . \end{aligned}$$
(A.6)

The cost function can be expressed as

$$\begin{aligned} E\left[ {{c_2}^2\left( n \right) } \right] = E\left[ {{{{\bar{u}}}^{\,\,2}}\left( n \right) } \right] - 2\,E\left[ {{\bar{u}}\left( n \right) \,x\left( n \right) } \right] + E\left[ {{x^2}\left( n \right) } \right] , \end{aligned}$$
(A.7)

and the optimization problem for this scenario can be obtained by rewriting (4) for (A.7) as

$$\begin{aligned} {\varvec{s^{*}}}= {\texttt {argmin}}_{{\varvec{s}}}\,\,E\big [{c_{2}}^{2}\left( n\right) \big ]. \end{aligned}$$
(A.8)

Combining (2) and (8), and substituting in (A.7), we have

$$\begin{aligned} E\left[ {{c_2}^2\left( n \right) } \right]&= E\left[ {{u^{2}}\left( n \right) } \right] + 2\,E\left[ {u\left( n \right) \,{\bar{r}}\left( n \right) } \right] +E\left[ {{{{\bar{r}}}^{2}}\left( n \right) } \right] -2E\left[ {u\left( n \right) x\left( n \right) } \right] \nonumber \\&\quad - 2E\left[ {{\bar{r}}\left( n \right) x\left( n \right) } \right] + E\left[ {{x^2}\left( n \right) } \right] \nonumber \\&= E\left[ {{u^{2}}\left( n \right) } \right] + 2\,\alpha {\mathbf{{s}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {u\left( n \right) x\left( n \right) } \right] \nonumber \\&\quad + 2\left( {1 - \alpha } \right) {\mathbf{{s}}^T}\left( n \right) E\left[ {u\left( n \right) {{\varvec{\zeta }}}\left( n \right) } \right] \nonumber \\&\quad + {\alpha ^2}\,{\mathbf{{s}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {{x^{2}}\left( n \right) } \right] {\mathbf{{h}}^T}\left( n \right) \mathbf{{s}}\left( n \right) \nonumber \\&\quad + \alpha \left( {1 - \alpha } \right) {\mathbf{{s}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {x\left( n \right) {{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s}}\left( n \right) \nonumber \\&\quad + \alpha \left( {1 - \alpha } \right) {\mathbf{{s}}^T}(n)E\left[ {{{\varvec{\zeta }}}\left( n \right) x\left( n \right) } \right] {\mathbf{{h}}^T}\left( n \right) \mathbf{{s}}\left( n \right) \nonumber \\&\quad + {\left( {1 - \alpha } \right) ^2}{\mathbf{{s}}^T}\left( n \right) E\left[ {{{\varvec{\zeta }}}\left( n \right) \,{{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s}}\left( n \right) - 2\,E\left[ {u\left( n \right) x\left( n \right) } \right] \nonumber \\&\quad - 2\alpha {\mathbf{{s}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {{x^{2}}\left( n \right) } \right] - 2\left( {1 - \alpha } \right) {\mathbf{{s}}^T}\left( n \right) E\left[ {{{\varvec{\zeta }}}\left( n \right) \,x\left( n \right) } \right] \nonumber \\&\quad + E\left[ {{x^2}\left( n \right) } \right] . \end{aligned}$$
(A.9)

Simplifying, we can write

$$\begin{aligned} E\left[ {{c_2}^2\left( n \right) } \right]&= {r_{uu}}\left( n \right) + 2\,\alpha \,{\mathbf{{s}}^T}\left( n \right) \mathbf{{h}}\left( n \right) {r_{ux}}\left( n \right) + {\alpha ^2}\,{\mathbf{{s}}^T}\left( n \right) \mathbf{{h}}\left( n \right) {r_{xx}}\left( n \right) {\mathbf{{h}}^T}\left( n \right) \mathbf{{s}}\left( n \right) \nonumber \\&\quad + {\left( {1 - \alpha } \right) ^2}{\mathbf{{s}}^T}\left( n \right) \mathbf{{R}}\left( n \right) \mathbf{{s}}\left( n \right) \nonumber \\&\quad - 2\,{r_{ux}}\left( n \right) - 2\,\alpha \,{\mathbf{{s}}^T}\left( n \right) \mathbf{{h}}\left( n \right) {r_{xx}}\left( n \right) + {r_{xx}}\left( n \right) . \end{aligned}$$
(A.10)

Minimizing the cost function in (A.10) by taking its derivative with respect to the shaping filter coefficients \({s_{_i}}\left( n \right) ,\,i = 0,1,\ldots ,M - 1\) and equating to zero, we have

$$\begin{aligned}&2\,\alpha \,{r_{ux}}\left( n \right) \mathbf{{h}}\left( n \right) + 2\,{\alpha ^2}\,\mathbf{{h}}\left( n \right) {r_{xx}}\left( n \right) {\mathbf{{h}}^T}\left( n \right) \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + 2\,{\left( {1 - \alpha } \right) ^2}{} \mathbf{{R}}\left( n \right) \mathbf{{s^{*}}}\left( n \right) - 2\,\alpha \,\mathbf{{h}}\left( n \right) {r_{xx}}\left( n \right) = 0. \end{aligned}$$
(A.11)

Simplifying (A.11), we obtain (9), where the optimal set of coefficients \(\mathbf{{s^{*}}}\left( n \right) \) represent the solution to the optimization problem of (A.8), when the acoustic signal from the environment is a time-delayed replica of the wirelessly received signal. \(\square \)

1.3 Proof of Lemma 4

Proof

The cost function for this scenario can be expressed as

$$\begin{aligned} E\left[ {{c_3}^2\left( n \right) } \right]&= E\left[ {{{\left( {{\bar{u}}\left( n \right) - x'\left( n \right) } \right) }^2}} \right] \nonumber \\&= E\left[ {{{{\bar{u}}}^{2}}\left( n \right) } \right] - 2\,E\left[ {{\bar{u}}\left( n \right) x'\left( n \right) } \right] + E\left[ {{{x'}^{2}}\left( n \right) } \right] , \end{aligned}$$
(A.12)

and the optimization problem as

$$\begin{aligned} {\varvec{s^{*}}}= {\texttt {argmin}}_{{\varvec{s}}}\,\,E\big [{c_{3}}^{2}\left( n\right) \big ]. \end{aligned}$$
(A.13)

Combining (2) and (8), and substituting in (A.12), we have

$$\begin{aligned} E\left[ {{c_3}^2\left( n \right) } \right]&= E\left[ {{u^{2}}\left( n \right) } \right] + 2\,E\left[ {u\left( n \right) {\bar{r}}\left( n \right) } \right] + E\left[ {{{{\bar{r}}}^{2}}\left( n \right) } \right] - 2\,E\left[ {u\left( n \right) x'\left( n \right) } \right] \nonumber \\&\quad - 2\,E\left[ {{\bar{r}}\left( n \right) x'\left( n \right) } \right] + E\left[ {{{x'}^{\,\,2}}\left( n \right) } \right] \nonumber \\&= E\left[ {{u^{2}}\left( n \right) } \right] + 2\,\alpha \,{\mathbf{{s}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {u\left( n \right) x\left( n \right) } \right] \nonumber \\&\quad + 2\left( {1 - \alpha } \right) {\mathbf{{s}}^T}\left( n \right) E\left[ {u\left( n \right) {{\varvec{\zeta }}}\left( n \right) } \right] \nonumber \\&\quad + {\alpha ^2}\,{\mathbf{{s}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {{x^{2}}\left( n \right) } \right] {\mathbf{{h}}^T}\left( n \right) \mathbf{{s}}\left( n \right) \nonumber \\&\quad + \alpha \left( {1 - \alpha } \right) {\mathbf{{s}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {x\left( n \right) {{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s}}\left( n \right) \nonumber \\&\quad + \alpha \left( {1 - \alpha } \right) {\mathbf{{s}}^T}(n)E\left[ {{{\varvec{\zeta }}}\left( n \right) x\left( n \right) } \right] {\mathbf{{h}}^T}\left( n \right) \mathbf{{s}}\left( n \right) \nonumber \\&\quad + {\left( {1 - \alpha } \right) ^2}{\mathbf{{s}}^T}\left( n \right) E\left[ {{{\varvec{\zeta }}}\left( n \right) {{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s}}\left( n \right) \nonumber \\&\quad - 2\,E\left[ {u\left( n \right) x'\left( n \right) } \right] + E\left[ {{{x'}^{2}}\left( n \right) } \right] - 2\,\alpha \,{\mathbf{{s}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {x'\left( n \right) x\left( n \right) } \right] \nonumber \\&\quad - 2\left( {1 - \alpha } \right) {\mathbf{{s}}^T}\left( n \right) E\left[ {{{\varvec{\zeta }}}\left( n \right) x'\left( n \right) } \right] . \end{aligned}$$
(A.14)

Simplifying, we can write

$$\begin{aligned} E\left[ {{c_3}^2\left( n \right) } \right]&= {r_{uu}}\left( n \right) + 2\,\alpha \,{\mathbf{{s}}^T}\left( n \right) \mathbf{{h}}\left( n \right) {r_{ux}}\left( n \right) + {\alpha ^2}\,{\mathbf{{s}}^T}\left( n \right) \mathbf{{h}}\left( n \right) {r_{xx}}\left( n \right) {\mathbf{{h}}^T}\left( n \right) \mathbf{{s}}\left( n \right) \nonumber \\&\quad + {\left( {1 - \alpha } \right) ^2}{\mathbf{{s}}^T}\left( n \right) \mathbf{{R}}\left( n \right) \mathbf{{s}}\left( n \right) - 2\,{r_{ux'}}\left( n \right) - 2\,\alpha \,{\mathbf{{s}}^T}\left( n \right) \mathbf{{h}}\left( n \right) {r_{xx'}}\left( n \right) + {r_{x'x'}}\left( n \right) . \end{aligned}$$
(A.15)

To reduce the difference between the intended hearing aid output and the actual hearing aid output, the cost function in (A.15) can be minimized by taking its derivative with respect to the shaping filter coefficients \({s_{_i}}\left( n \right) ,i = 0,1,\ldots ,M - 1\) and then equating to zero, we have

$$\begin{aligned}&2\,\alpha \,\mathbf{{h}}\left( n \right) {r_{ux}}\left( n \right) + 2\,{\alpha ^2}\,\mathbf{{h}}\left( n \right) {r_{xx}}\left( n \right) {\mathbf{{h}}^T}\left( n \right) \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + 2\,{\left( {1 - \alpha } \right) ^2}\,\mathbf{{R}}\left( n \right) \mathbf{{s^{*}}}\left( n \right) - 2\,\alpha \,\mathbf{{h}}\left( n \right) {r_{xx'}}\left( n \right) = 0. \end{aligned}$$
(A.16)

Simplifying the above equation, we obtain (12), where \(\mathbf{{s^{*}}}\left( n \right) \) represents the solution to the optimization problem in (A.13), when the acoustic inputs are independent of each other and received from two different sources. \(\square \)

Appendix B

1.1 Proof of Lemma 3

Proof

The cost function for \({\bar{G}}\left( k \right) \) optimization can be represented by combining (2), (7) and (8), and substituting in (A.7) as

$$\begin{aligned} E\left[ {{c_2}^2\left( n \right) } \right]&= {\left| {{G_1}} \right| ^2}{{{\bar{g}}}^{2}}\left( n \right) E\left[ {{e^2}\left( n \right) } \right] \nonumber \\&\quad + 2\alpha \left| {{G_1}} \right| {\bar{g}}\left( n \right) {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {e\left( n \right) x\left( n \right) } \right] \nonumber \\&\quad + 2\left( {1 - \alpha } \right) \left| {{G_1}} \right| {\bar{g}}\left( n \right) E\left[ {e\left( n \right) {{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + {\alpha ^2}{\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {{x^{2}}\left( n \right) } \right] {\mathbf{{h}}^T}\left( n \right) \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + \alpha \left( {1 - \alpha } \right) {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {x\left( n \right) {{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + \alpha \left( {1 - \alpha } \right) {\mathbf{{s^{*}}}^T}(n)E\left[ {{{\varvec{\zeta }}}\left( n \right) \,\,x\left( n \right) } \right] {\mathbf{{h}}^T}\left( n \right) \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + {\left( {1 - \alpha } \right) ^2}{\mathbf{{s^{*}}}^T}\left( n \right) E\left[ {{{\varvec{\zeta }}}\left( n \right) {{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad - 2\left| {{G_1}} \right| {\bar{g}}\left( n \right) E\left[ {e\left( n \right) x\left( n \right) } \right] - 2\alpha \,{\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {{x^2}\left( n \right) } \right] \nonumber \\&\quad - 2\left( {1 - \alpha } \right) {\mathbf{{s^{*}}}^T}\left( n \right) E\left[ {{{\varvec{\zeta }}}\left( n \right) x\left( n \right) } \right] + E\left[ {{x^2}\left( n \right) } \right] . \end{aligned}$$
(B.1)

Simplifying the above equation, we can write

$$\begin{aligned} E\left[ {{c_2}^2\left( n \right) } \right]&= {\left| {{G_1}} \right| ^2}{{{\bar{g}}}^2}\left( n \right) \Big \{ E\left[ {v\left( n \right) v\left( n \right) } \right] - 2\,E\left[ {v\left( n \right) y\left( n \right) } \right] + E\left[ {y\left( n \right) y\left( n \right) } \right] \Big \}\nonumber \\&\quad + 2\,\alpha \left| {{G_1}} \right| {\bar{g}}\left( n \right) E\left[ {v\left( n \right) \,x\left( n \right) } \right] {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) \nonumber \\&\quad - 2\,\alpha \left| {{G_1}} \right| {\bar{g}}\left( n \right) E\left[ {y\left( n \right) \,x\left( n \right) } \right] {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) \nonumber \\&\quad + 2\left( {1 - \alpha } \right) \left| {{G_1}} \right| {\bar{g}}\left( n \right) E\left[ {v\left( n \right) \,{{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad - 2\left( {1 - \alpha } \right) \left| {{G_1}} \right| {\bar{g}}\left( n \right) E\left[ {y\left( n \right) \,{{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + {\alpha ^2}\,{\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {x\left( n \right) \,\,x\left( n \right) } \right] {\mathbf{{h}}^T}\left( n \right) \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + \alpha \left( {1 - \alpha } \right) {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {x\left( n \right) \,{{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + \alpha \left( {1 - \alpha } \right) {\mathbf{{s^{*}}}^T}(n)E\left[ {{{\varvec{\zeta }}}\left( n \right) \,x\left( n \right) } \right] {\mathbf{{h}}^T}\left( n \right) \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + {\left( {1 - \alpha } \right) ^2}{\mathbf{{s^{*}}}^T}\left( n \right) E\left[ {{{\varvec{\zeta }}}\left( n \right) \,{{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad - 2\left| {{G_1}} \right| {\bar{g}}\left( n \right) E\left[ {v\left( n \right) x\left( n \right) } \right] + 2\left| {{G_1}} \right| {\bar{g}}\left( n \right) E\left[ {y\left( n \right) x\left( n \right) } \right] \nonumber \\&\quad - 2\,\alpha \,{\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {{x^{\,2}}\left( n \right) } \right] + E\left[ {{x^2}\left( n \right) } \right] \nonumber \\&\quad - 2\left( {1 - \alpha } \right) {\mathbf{{s^{*}}}^T}\left( n \right) E\left[ {{{\varvec{\zeta }}}\left( n \right) \,\,x\left( n \right) } \right] \nonumber \\&= {\left| {{G_1}} \right| ^2}\,{{{\bar{g}}}^2}\left( n \right) \Big [ {{r_{vv}}\left( n \right) - 2\,{r_{vy}}\left( n \right) + {r_{yy}}\left( n \right) } \Big ] \nonumber \\&\quad + 2\,\alpha \left| {{G_1}} \right| {\bar{g}}\left( n \right) {r_{vx}}\left( n \right) {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) \nonumber \\&\quad - 2\,\alpha \left| {{G_1}} \right| {\bar{g}}\left( n \right) {r_{yx}}\left( n \right) {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) \nonumber \\&\quad + {\alpha ^2}\,{\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) {r_{xx}}\left( n \right) {\mathbf{{h}}^T}\left( n \right) \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + {\left( {1 - \alpha } \right) ^2}{\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{R}}\left( n \right) \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad - 2\left| {{G_1}} \right| {\bar{g}}\left( n \right) {r_{vx}}\left( n \right) \nonumber + 2\left| {{G_1}} \right| {\bar{g}}\left( n \right) {r_{yx}}\left( n \right) \nonumber \\&\quad - 2\,\alpha \,{\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) {r_{xx}}\left( n \right) + {r_{xx}}\left( n \right) . \end{aligned}$$
(B.2)

Minimizing the cost function in (B.2) by taking its derivative with respect to the feed-forward path FIR filter coefficients \({{\bar{g}}_{_i}}\left( n \right) ,\,\,i = 0,1,\ldots ,L - 1\) and equating to zero, we have

$$\begin{aligned}&2\left| {{G_1}} \right| ^{2}{\bar{g}}\left( n \right) \Big [ {{r_{vv}}\left( n \right) - 2{r_{vy}}\left( n \right) + {r_{yy}}\left( n \right) } \Big ] + 2\,\alpha \left| {{G_1}} \right| {r_{vx}}\left( n \right) {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) \nonumber \\&\quad - 2\,\alpha \left| {{G_1}} \right| {r_{yx}}\left( n \right) {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) - 2\left| {{G_1}} \right| {r_{vx}}\left( n \right) + 2\left| {{G_1}} \right| {r_{yx}}\left( n \right) = 0. \end{aligned}$$
(B.3)

Simplifying the above equation, we obtain (11), where \({{\bar{\mathbf{g}}}^{*}}\left( n \right) = \Big [ \bar{g}^{*}\left( n \right) ,\bar{g}^{*}\left( {n - 1} \right) ,\ldots ,\bar{g}^{*}\left( {n - L + 1} \right) \Big ]^T\) is the solution to the optimization problem in (10), such that \({{\bar{\mathbf{g}}^{*}}}\left( n \right) \in {\mathbb {R}}^{L\times 1}\), when the acoustic environment input is a delayed version of the signal from the wirelessly transmitting device, and \(\mathbf{{s^{*}}}\left( n \right) \) is the optimal set of coefficients for the shaping filter, as obtained in (9). \(\square \)

1.2 Proof of Lemma 5

Proof

: The cost function for the optimization of \({\bar{G}}\left( k \right) \) can be expressed by combining (2), (7) and (8), and substituting in (A.12) as

$$\begin{aligned} E\left[ {{c_3}^2\left( n \right) } \right]&= \left| {{G_1}} \right| {^2}\,{{{\bar{g}}}^2}\left( n \right) E\left[ {{e^{2}}\left( n \right) } \right] 2\,\alpha \left| {{G_1}} \right| {\bar{g}}\left( n \right) {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {e\left( n \right) x\left( n \right) } \right] \nonumber \\&\quad + 2\left( {1 - \alpha } \right) \left| {{G_1}} \right| {\bar{g}}\left( n \right) {\mathbf{{s^{*}}}^T}\left( n \right) E\left[ {e\left( n \right) {{\varvec{\zeta }}}\left( n \right) } \right] \nonumber \\&\quad + {\alpha ^2}\,{\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {{x^{2}}\left( n \right) } \right] {\mathbf{{h}}^T}\left( n \right) \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + \alpha \left( {1 - \alpha } \right) {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {x\left( n \right) {{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + \alpha \left( {1 - \alpha } \right) {\mathbf{{s^{*}}}^T}(n)E\left[ {{{\varvec{\zeta }}}\left( n \right) x\left( n \right) } \right] {\mathbf{{h}}^T}\left( n \right) \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + {\left( {1 - \alpha } \right) ^2}{\mathbf{{s^{*}}}^T}\left( n \right) E\left[ {{{\varvec{\zeta }}}\left( n \right) {{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s^{*}}}\left( n \right) - 2\,E\left[ {u\left( n \right) x'\left( n \right) } \right] \nonumber \\&\quad - 2\,\alpha \,{\mathbf{{s^{*}}}^T}\,\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {x'\left( n \right) x\left( n \right) } \right] - 2\left( {1 - \alpha } \right) {\mathbf{{s^{*}}}^T}\left( n \right) E\left[ {{{\varvec{\zeta }}}\left( n \right) x'\left( n \right) } \right] \nonumber \\&\quad + E\left[ {{{x'}^{2}}\left( n \right) } \right] . \end{aligned}$$
(B.4)

Simplifying the above equation, we can write

$$\begin{aligned} E\left[ {{c_3}^2\left( n \right) } \right]&= {\left| {{G_1}} \right| ^2}{{{\bar{g}}}^{2}}\left( n \right) \Big \{ E\left[ {v\left( n \right) v\left( n \right) } \right] - 2\,E\left[ {v\left( n \right) y\left( n \right) } \right] + E\left[ {y\left( n \right) y\left( n \right) } \right] \Big \}\nonumber \\&\quad + 2\,\alpha \,\left| {{G_1}} \right| {\bar{g}}\left( n \right) {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {v\left( n \right) \,x\left( n \right) } \right] \nonumber \\&\quad - 2\,\alpha \,\left| {{G_1}} \right| {\bar{g}}\left( n \right) {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {y\left( n \right) \,x\left( n \right) } \right] \nonumber \\&\quad + 2\left( {1 - \alpha } \right) \left| {{G_1}} \right| {\bar{g}}\left( n \right) {\mathbf{{s^{*}}}^T}\left( n \right) E\left[ {v\left( n \right) \,{{\varvec{\zeta }}}\left( n \right) } \right] \nonumber \\&\quad - 2\left( {1 - \alpha } \right) \left| {{G_1}} \right| {\bar{g}}\left( n \right) {\mathbf{{s^{*}}}^T}\left( n \right) E\left[ {y\left( n \right) \,{{\varvec{\zeta }}}\left( n \right) } \right] \nonumber \\&\quad + {\alpha ^2}\,{\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {{x^2}\left( n \right) } \right] {\mathbf{{h}}^T}\left( n \right) \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + \alpha \left( {1 - \alpha } \right) {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {x\left( n \right) {{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + \alpha \left( {1 - \alpha } \right) {\mathbf{{s^{*}}}^T}(n)E\left[ {{{\varvec{\zeta }}}\left( n \right) x\left( n \right) } \right] {\mathbf{{h}}^T}\left( n \right) \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + {\left( {1 - \alpha } \right) ^2}{\mathbf{{s^{*}}}^T}\left( n \right) E\left[ {{{\varvec{\zeta }}}\left( n \right) {{{\varvec{\zeta }}}^T}\left( n \right) } \right] \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad - 2\left| {{G_1}} \right| {\bar{g}}\left( n \right) E\left[ {v\left( n \right) x'\left( n \right) } \right] + 2\left| {{G_1}} \right| {\bar{g}}\left( n \right) E\left[ {y\left( n \right) x'\left( n \right) } \right] \nonumber \\&\quad - 2\,\alpha \,{\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) E\left[ {x\left( n \right) \,\,x'\left( n \right) } \right] - 2\,\alpha \,{\mathbf{{s^{*}}}^T}\left( n \right) E\left[ {{{\varvec{\zeta }}}\left( n \right) x'\left( n \right) } \right] \nonumber \\&\quad + E\left[ {{{x'}^{2}}\left( n \right) } \right] \nonumber \\&= {\left| {{G_1}}\right| ^2}\,{{{\bar{g}}}^2}\left( n \right) \Big [ {{r_{vv}}\left( n \right) - 2{r_{vy}}\left( n \right) + {r_{yy}}\left( n \right) } \Big ] \nonumber \\&\quad + 2\,\alpha \,\left| {{G_1}}\right| {\bar{g}}\left( n \right) {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) {r_{vx}}\left( n \right) \nonumber \\&\quad - 2\,\alpha \left| {{G_1}} \right| {\bar{g}}\left( n \right) {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) {r_{yx}}\left( n \right) \nonumber \\&\quad + {\alpha ^2}\,{\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) {r_{xx}}\left( n \right) {\mathbf{{h}}^T}\left( n \right) \mathbf{{s^{*}}}\left( n \right) \nonumber \\&\quad + {\left( {1 - \alpha } \right) ^2}{\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{R}}\left( n \right) \mathbf{{s^{*}}}\left( n \right) - 2\left| {{G_1}} \right| {\bar{g}}\left( n \right) {r_{vx'}}\left( n \right) \nonumber \\&\quad + 2\,\left| {{G_1}} \right| {\bar{g}}\left( n \right) {r_{yx'}}\left( n \right) - 2\,\alpha \,{\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) {r_{xx'}}\left( n \right) + {r_{x'x'}}\left( n \right) . \end{aligned}$$
(B.5)

Minimizing the cost function in (B.5) by taking its derivative with respect to the feed-forward path FIR filter coefficients \({{\bar{g}}_{_i}}\left( n \right) ,i = 0,1,\ldots ,L - 1\) and equating to zero, we have

$$\begin{aligned}&2\left| {{G_1}} \right| {^2}{\bar{g}}\left( n \right) \left[ {{r_{vv}}\left( n \right) - 2{r_{vy}}\left( n \right) + {r_{yy}}\left( n \right) } \right] + 2\,\alpha \left| {{G_1}} \right| {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) {r_{vx}}\left( n \right) \nonumber \\&\quad - 2\,\alpha \left| {{G_1}} \right| {\mathbf{{s^{*}}}^T}\left( n \right) \mathbf{{h}}\left( n \right) {r_{yx}}\left( n \right) - 2\left| {{G_1}} \right| {r_{vx'}}\left( n \right) + 2\left| {{G_1}} \right| {r_{yx'}}\left( n \right) = 0. \end{aligned}$$
(B.6)

Simplifying the above equation, we obtain (13), where \({{\bar{\mathbf{g}}}^{*}}\left( n \right) = \Big [\bar{g}^{*}\left( n \right) ,\bar{g}^{*}\left( {n - 1} \right) ,\ldots ,\bar{g}^{*}\left( {n - L + 1} \right) \Big ]^T\) is the solution to the optimization problem in (10) for \({\bar{G}}\left( k \right) \) . \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, A., Anand, A., Østergaard, J. et al. Sound Quality Improvement for Hearing Aids in Presence of Multiple Inputs. Circuits Syst Signal Process 38, 3591–3615 (2019). https://doi.org/10.1007/s00034-019-01104-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01104-2

Keywords

Navigation